000874672 001__ 874672
000874672 005__ 20210130004740.0
000874672 037__ $$aFZJ-2020-01588
000874672 1001_ $$0P:(DE-Juel1)168542$$aBrito, Mariano$$b0$$eCorresponding author
000874672 1112_ $$a10th Liquid Matter Conference$$cLjubljana$$d2017-07-17 - 2020-03-21$$wSlovenia
000874672 245__ $$aComparison of Different Methods for Calculating Effective Interactions and Pressure in Charge-stabilized Dispersions
000874672 260__ $$c2017
000874672 3367_ $$033$$2EndNote$$aConference Paper
000874672 3367_ $$2BibTeX$$aINPROCEEDINGS
000874672 3367_ $$2DRIVER$$aconferenceObject
000874672 3367_ $$2ORCID$$aCONFERENCE_POSTER
000874672 3367_ $$2DataCite$$aOutput Types/Conference Poster
000874672 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1586251562_14672$$xOther
000874672 520__ $$aCharge-stabilized suspensions have interesting static and dynamic features, reflected in properties such as the suspension osmotic pressure, generalized sedimentation coefficient and viscosity. These properties are determined by electro-steric and (partially) by electro-hydrodynamic interactions. Due to the large size asymmetry between the colloidal macroions and the small microions, the degrees of freedom of the latter can be integrated out, resulting in an effective one-component interaction potential describing microion-dressed colloidal quasi-particles. We present a comparison, and partial extension, of various methods of calculating effective colloidal interaction parameters including effective charges and screening constants [1]. Additionally, we discuss osmotic suspension pressure calculations for dispersions in Donnan equilibrium with a salt ion reservoir. We discuss methods including cell-models [2,3], renormalized jellium models [4], and multi-colloid-centered mean-field models [5,6]. The pros and cons of the various methods are assessed by comparison with primitive model based computer simulations.References[1] M. Brito, J. Riest, A. Denton and G. Nägele, to be submitted (2017).[2] S. Alexander et al., J. Chem. Phys. 80, 5776 (1984).[3] E. Trizac et al., Langmuir 19, 4027 (2003).[4] S. Pianegonda et al., J. Chem. Phys. 126, 014702 (2007).[5] A. R, Denton, J. Phys.: Condens. Matter 20, 494230 (2008).[6] N. Boon et al., PNAS 112, 30, 9242, (2015).
000874672 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000874672 7001_ $$0P:(DE-Juel1)156528$$aRiest, Jonas$$b1
000874672 7001_ $$0P:(DE-HGF)0$$aDenton, Alan$$b2
000874672 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b3
000874672 909CO $$ooai:juser.fz-juelich.de:874672$$pVDB
000874672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168542$$aForschungszentrum Jülich$$b0$$kFZJ
000874672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b3$$kFZJ
000874672 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000874672 920__ $$lyes
000874672 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000874672 980__ $$aposter
000874672 980__ $$aVDB
000874672 980__ $$aI:(DE-Juel1)IBI-4-20200312
000874672 980__ $$aUNRESTRICTED