000874678 001__ 874678
000874678 005__ 20210130004741.0
000874678 037__ $$aFZJ-2020-01594
000874678 1001_ $$0P:(DE-Juel1)168542$$aBrito, Mariano$$b0$$eCorresponding author
000874678 1112_ $$aInternational Soft Matter Conference 2019$$cEdinburgh$$d2019-06-03 - 2019-06-07$$wUK
000874678 245__ $$aDeswelling effects on transport properties of ionic microgel suspensions
000874678 260__ $$c2019
000874678 3367_ $$033$$2EndNote$$aConference Paper
000874678 3367_ $$2BibTeX$$aINPROCEEDINGS
000874678 3367_ $$2DRIVER$$aconferenceObject
000874678 3367_ $$2ORCID$$aCONFERENCE_POSTER
000874678 3367_ $$2DataCite$$aOutput Types/Conference Poster
000874678 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1586251597_14672$$xOther
000874678 520__ $$aMicrogels are solvent-containing, cross-linked polymer networks of colloidal size that can reversibly swell or deswell in response to external stimuli. Ionic microgels, in particular, are highly sensitive to changes in environmental conditions such as temperature, solvent quality, polymer cross-linking, suspension ionic strength and particle concentration, which allows for controlling their size and effective interaction. In this work, we study theoretically the effects of concentration-dependent deswelling of weakly-crosslinked ionic microgels on dynamic and structural suspension properties [1]. We use and compare two different theoretical approaches to calculate the equilibrium microgel size, namely the Denton-Tang method based on a Poisson-Boltzmann cell model [2], and a multi-colloid center based thermodynamic perturbation method [3]. In combination with an effective interaction potential for spherical ionic microgels derived by Denton [4], we compute static pair correlation functions and structure factors. These are used as input in our calculations of dynamic suspension properties including the hydrodynamic function, collective diffusion coefficient, and high-frequency viscosity. As a consequence of the concentration-dependent deswelling, the collective diffusion of ionic microgels is enhanced while the suspension viscosity is lowered. We finally discuss charge-renormalization effects in ionic microgels.References[1] M. Brito, J. Riest, A. R. Denton and G. Nägele, to be submitted.[2] A. R. Denton and Qiyun Tang, J. Chem. Phys. 145, 164901 (2016).[3] T. J. Weyer and A. R. Denton, Soft Matter 14, 4530 (2018).[4] A. R. Denton, Phys. Rev. E 67, 011804 (2003).
000874678 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000874678 909CO $$ooai:juser.fz-juelich.de:874678$$pVDB
000874678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168542$$aForschungszentrum Jülich$$b0$$kFZJ
000874678 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000874678 9141_ $$y2020
000874678 920__ $$lyes
000874678 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000874678 980__ $$aposter
000874678 980__ $$aVDB
000874678 980__ $$aI:(DE-Juel1)IBI-4-20200312
000874678 980__ $$aUNRESTRICTED