Hauptseite > Publikationsdatenbank > Tantalum( v ) 1,3-propanediolate β-diketonate solution as a precursor to sol–gel derived, metal oxide thin films > print |
001 | 874696 | ||
005 | 20220930130234.0 | ||
024 | 7 | _ | |a 10.1039/D0RA02558E |2 doi |
024 | 7 | _ | |a 2128/24682 |2 Handle |
024 | 7 | _ | |a WOS:000530352000046 |2 WOS |
037 | _ | _ | |a FZJ-2020-01611 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Beale, Christopher |0 P:(DE-Juel1)169713 |b 0 |
245 | _ | _ | |a Tantalum( v ) 1,3-propanediolate β-diketonate solution as a precursor to sol–gel derived, metal oxide thin films |
260 | _ | _ | |a London |c 2020 |b RSC Publishing |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1599640052_19835 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Tantalum oxide is ubiquitous in everyday life, from capacitors in electronics to ion conductors for electrochromic windows and electrochemical storage devices. Investigations into sol–gel deposition of tantalum oxide, and its sister niobium oxide, has accelerated since the 1980s and continues to this day. The aim of this study is to synthesize a near UV sensitive, air stable, and low toxicity tantalum sol–gel precursor solution for metal oxide thin films – these attributes promise to reduce manufacturing costs and allow for facile mass production. By utilizing 1D and 2D nuclear magnetic resonance, this study shows that by removing ethanol from the precursor solution at a relatively low temperature and pressure, decomposition of the photosensitive complex can be minimized while obtaining a precursor solution with sufficient stability for storage and processing in the atmosphere. The solution described herein is further modified for inkjet printing, where multiple material characterization techniques demonstrate that the solution can be utilized in low temperature, photochemical solution deposition of tantalum oxide, which is likely amorphous. Tested substrates include amorphous silica, crystalline silicon wafer, and gold/titanium/PET foil. The hope is that these results may spark future investigations into electronic, optical, and biomedical device fabrication with tantalum oxide, and potentially niobium oxide, based films using the proposed synthesis method. |
536 | _ | _ | |a 523 - Controlling Configuration-Based Phenomena (POF3-523) |0 G:(DE-HGF)POF3-523 |c POF3-523 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Hamacher, Stefanie |0 P:(DE-Juel1)166550 |b 1 |
700 | 1 | _ | |a Yakushenko, Alexey |0 P:(DE-Juel1)138367 |b 2 |
700 | 1 | _ | |a Bensaid, Oumaima |0 P:(DE-Juel1)176861 |b 3 |
700 | 1 | _ | |a Willbold, Sabine |0 P:(DE-Juel1)133857 |b 4 |
700 | 1 | _ | |a Beltramo, Guillermo |0 P:(DE-Juel1)128800 |b 5 |
700 | 1 | _ | |a Möller, Sören |0 P:(DE-Juel1)139534 |b 6 |
700 | 1 | _ | |a Hartmann, Heinrich |0 P:(DE-Juel1)166271 |b 7 |
700 | 1 | _ | |a Neumann, Elmar |0 P:(DE-Juel1)156529 |b 8 |
700 | 1 | _ | |a Mussler, Gregor |0 P:(DE-Juel1)128617 |b 9 |
700 | 1 | _ | |a Shkurmanov, Alexander |0 P:(DE-Juel1)174330 |b 10 |
700 | 1 | _ | |a Mayer, Dirk |0 P:(DE-Juel1)128707 |b 11 |
700 | 1 | _ | |a Wolfrum, Bernhard |0 P:(DE-Juel1)128745 |b 12 |
700 | 1 | _ | |a Offenhäusser, Andreas |0 P:(DE-Juel1)128713 |b 13 |e Corresponding author |
773 | _ | _ | |a 10.1039/D0RA02558E |g Vol. 10, no. 23, p. 13737 - 13748 |0 PERI:(DE-600)2623224-8 |n 23 |p 13737 - 13748 |t RSC Advances |v 10 |y 2020 |x 2046-2069 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874696/files/Invoice_INV_002649.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874696/files/Invoice_INV_002649.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874696/files/d0ra02558e.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874696/files/d0ra02558e.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:874696 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169713 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166550 |
910 | 1 | _ | |a IBI-3 |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)166550 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-Juel1)138367 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176861 |
910 | 1 | _ | |a IBI-3 |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)176861 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)133857 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128800 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)139534 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)166271 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)156529 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128617 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)174330 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)128707 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)128745 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)128713 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-523 |2 G:(DE-HGF)POF3-500 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RSC ADV : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0 |0 LIC:(DE-HGF)CCBYNC3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-2-20200312 |k IBI-2 |l Mechanobiologie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
980 | _ | _ | |a I:(DE-Juel1)IBI-2-20200312 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|