000874699 001__ 874699
000874699 005__ 20240711085557.0
000874699 0247_ $$2doi$$a10.3390/en13040987
000874699 0247_ $$2Handle$$a2128/24857
000874699 0247_ $$2WOS$$aWOS:000522492700215
000874699 037__ $$aFZJ-2020-01614
000874699 082__ $$a620
000874699 1001_ $$00000-0001-9313-3731$$aNenning, Andreas$$b0$$eCorresponding author
000874699 245__ $$aThe Relation of Microstructure, Materials Properties and Impedance of SOFC Electrodes: A Case Study of Ni/GDC Anodes
000874699 260__ $$aBasel$$bMDPI$$c2020
000874699 3367_ $$2DRIVER$$aarticle
000874699 3367_ $$2DataCite$$aOutput Types/Journal article
000874699 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589275415_18199
000874699 3367_ $$2BibTeX$$aARTICLE
000874699 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874699 3367_ $$00$$2EndNote$$aJournal Article
000874699 520__ $$aDetailed insight into electrochemical reaction mechanisms and rate limiting steps is crucial for targeted optimization of solid oxide fuel cell (SOFC) electrodes, especially for new materials and processing techniques, such as Ni/Gd-doped ceria (GDC) cermet anodes in metal-supported cells. Here, we present a comprehensive model that describes the impedance of porous cermet electrodes according to a transmission line circuit. We exemplify the validity of the model on electrolyte-supported symmetrical model cells with two equal Ni/Ce0.9Gd0.1O1.95-δ anodes. These anodes exhibit a remarkably low polarization resistance of less than 0.1 Ωcm2 at 750 °C and OCV, and metal-supported cells with equally prepared anodes achieve excellent power density of >2 W/cm2 at 700 °C. With the transmission line impedance model, it is possible to separate and quantify the individual contributions to the polarization resistance, such as oxygen ion transport across the YSZ-GDC interface, ionic conductivity within the porous anode, oxygen exchange at the GDC surface and gas phase diffusion. Furthermore, we show that the fitted parameters consistently scale with variation of electrode geometry, temperature and atmosphere. Since the fitted parameters are representative for materials properties, we can also relate our results to model studies on the ion conductivity, oxygen stoichiometry and surface catalytic properties of Gd-doped ceria and obtain very good quantitative agreement. With this detailed insight into reaction mechanisms, we can explain the excellent performance of the anode as a combination of materials properties of GDC and the unusual microstructure that is a consequence of the reductive sintering procedure, which is required for anodes in metal-supported cells.
000874699 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000874699 588__ $$aDataset connected to CrossRef
000874699 7001_ $$0P:(DE-Juel1)176805$$aBischof, Cornelia$$b1$$ufzj
000874699 7001_ $$0P:(DE-HGF)0$$aFleig, Jürgen$$b2
000874699 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3$$ufzj
000874699 7001_ $$00000-0002-2567-1885$$aOpitz, Alexander K.$$b4
000874699 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en13040987$$gVol. 13, no. 4, p. 987 -$$n4$$p987 -$$tEnergies$$v13$$x1996-1073$$y2020
000874699 8564_ $$uhttps://juser.fz-juelich.de/record/874699/files/energies-13-00987.pdf$$yOpenAccess
000874699 8564_ $$uhttps://juser.fz-juelich.de/record/874699/files/energies-13-00987.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874699 909CO $$ooai:juser.fz-juelich.de:874699$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874699 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)176805$$aExternal Institute$$b1$$kExtern
000874699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
000874699 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000874699 9141_ $$y2020
000874699 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874699 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000874699 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874699 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874699 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000874699 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874699 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874699 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874699 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874699 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874699 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874699 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874699 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874699 920__ $$lyes
000874699 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000874699 9801_ $$aFullTexts
000874699 980__ $$ajournal
000874699 980__ $$aVDB
000874699 980__ $$aUNRESTRICTED
000874699 980__ $$aI:(DE-Juel1)IEK-1-20101013
000874699 981__ $$aI:(DE-Juel1)IMD-2-20101013