000874708 001__ 874708
000874708 005__ 20230127125337.0
000874708 0247_ $$2doi$$a10.5194/gmd-13-1513-2020
000874708 0247_ $$2ISSN$$a1991-959X
000874708 0247_ $$2ISSN$$a1991-9603
000874708 0247_ $$2Handle$$a2128/24615
000874708 0247_ $$2WOS$$aWOS:000522156800001
000874708 0247_ $$2altmetric$$aaltmetric:79111401
000874708 037__ $$aFZJ-2020-01623
000874708 082__ $$a550
000874708 1001_ $$0P:(DE-Juel1)151210$$aHuijnen, Vincent$$b0$$eCorresponding author
000874708 245__ $$aAn intercomparison of tropospheric ozone reanalysis products from CAMS, CAMS interim, TCR-1, and TCR-2
000874708 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2020
000874708 3367_ $$2DRIVER$$aarticle
000874708 3367_ $$2DataCite$$aOutput Types/Journal article
000874708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585498860_26177
000874708 3367_ $$2BibTeX$$aARTICLE
000874708 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874708 3367_ $$00$$2EndNote$$aJournal Article
000874708 520__ $$aGlobal tropospheric ozone reanalyses constructed using different state-of-the-art satellite data assimilation systems, prepared as part of the Copernicus Atmosphere Monitoring Service (CAMS-iRean and CAMS-Rean) as well as two fully independent reanalyses (TCR-1 and TCR-2, Tropospheric Chemistry Reanalysis), have been intercompared and evaluated for the past decade. The updated reanalyses (CAMS-Rean and TCR-2) generally show substantially improved agreements with independent ground and ozone-sonde observations over their predecessor versions (CAMS-iRean and TCR-1) for diurnal, synoptical, seasonal, and interannual variabilities. For instance, for the Northern Hemisphere (NH) mid-latitudes the tropospheric ozone columns (surface to 300 hPa) from the updated reanalyses show mean biases to within 0.8 DU (Dobson units, 3 % relative to the observed column) with respect to the ozone-sonde observations. The improved performance can likely be attributed to a mixture of various upgrades, such as revisions in the chemical data assimilation, including the assimilated measurements, and the forecast model performance. The updated chemical reanalyses agree well with each other for most cases, which highlights the usefulness of the current chemical reanalyses in a variety of studies. Meanwhile, significant temporal changes in the reanalysis quality in all the systems can be attributed to discontinuities in the observing systems. To improve the temporal consistency, a careful assessment of changes in the assimilation configuration, such as a detailed assessment of biases between various retrieval products, is needed. Our comparison suggests that improving the observational constraints, including the continued development of satellite observing systems, together with the optimization of model parameterizations such as deposition and chemical reactions, will lead to increasingly consistent long-term reanalyses in the future.
000874708 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000874708 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000874708 588__ $$aDataset connected to CrossRef
000874708 7001_ $$00000-0002-1466-4655$$aMiyazaki, Kazuyuki$$b1
000874708 7001_ $$00000-0003-4880-5329$$aFlemming, Johannes$$b2
000874708 7001_ $$aInness, Antje$$b3
000874708 7001_ $$00000-0002-2319-7753$$aSekiya, Takashi$$b4
000874708 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b5
000874708 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-13-1513-2020$$gVol. 13, no. 3, p. 1513 - 1544$$n3$$p1513 - 1544$$tGeoscientific model development$$v13$$x1991-9603$$y2020
000874708 8564_ $$uhttps://juser.fz-juelich.de/record/874708/files/Huijnen-Reanalysis_evaluation-gmd_2020.pdf$$yOpenAccess
000874708 8564_ $$uhttps://juser.fz-juelich.de/record/874708/files/Huijnen-Reanalysis_evaluation-gmd_2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874708 909CO $$ooai:juser.fz-juelich.de:874708$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b5$$kFZJ
000874708 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000874708 9141_ $$y2020
000874708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874708 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874708 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2017
000874708 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874708 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874708 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874708 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874708 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874708 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874708 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874708 920__ $$lyes
000874708 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000874708 980__ $$ajournal
000874708 980__ $$aVDB
000874708 980__ $$aUNRESTRICTED
000874708 980__ $$aI:(DE-Juel1)JSC-20090406
000874708 9801_ $$aFullTexts