000874714 001__ 874714
000874714 005__ 20220228143453.0
000874714 0247_ $$2doi$$a10.1007/s12975-020-00802-3
000874714 0247_ $$2ISSN$$a1868-4483
000874714 0247_ $$2ISSN$$a1868-601X
000874714 0247_ $$2Handle$$a2128/26758
000874714 0247_ $$2altmetric$$aaltmetric:77473615
000874714 0247_ $$2pmid$$a32166716
000874714 0247_ $$2WOS$$aWOS:000563916500001
000874714 037__ $$aFZJ-2020-01626
000874714 082__ $$a610
000874714 1001_ $$00000-0003-1423-0934$$aAswendt, Markus$$b0$$eCorresponding author
000874714 245__ $$aLesion Size- and Location-Dependent Recruitment of Contralesional Thalamus and Motor Cortex Facilitates Recovery after Stroke in Mice
000874714 260__ $$aNew York, NY$$bSpringer$$c2021
000874714 3367_ $$2DRIVER$$aarticle
000874714 3367_ $$2DataCite$$aOutput Types/Journal article
000874714 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646034934_1616
000874714 3367_ $$2BibTeX$$aARTICLE
000874714 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874714 3367_ $$00$$2EndNote$$aJournal Article
000874714 520__ $$aBrain lesions caused by cerebral ischemia or hemorrhage lead to a local breakdown of energy homeostasis followed by irreversible cell death and long-term impairment. Importantly, local brain lesions also generate remote functional and structural disturbances, which contribute to the behavioral deficit but also impact the recovery of function. While spontaneous recovery has been associated with endogenous repair mechanisms at the vascular, neural, and immune cell levels, the impact of structural plasticity on sensory-motor dysfunction and recovery thereof remains to be elucidated by longitudinal imaging in a mouse model. Here, we applied behavioral assessments, in vivo fiber tracking, and histological validation in a photothrombotic stroke mouse model. Atlas-based whole-brain structural connectivity analysis and ex vivo histology revealed secondary neurodegeneration in the ipsilesional brain areas, mostly in the dorsal sensorimotor area of the thalamus. Furthermore, we describe for the first time a lesion size-dependent increase in structural connectivity between the contralesional primary motor cortex and thalamus with the ipsilesional cortex. The involvement of the contralesional hemisphere was associated with improved functional recovery relative to lesion size. This study highlights the importance of in vivo fiber tracking and the role of the contralesional hemisphere during spontaneous functional improvement as a potential novel stroke biomarker and therapeutic targets.
000874714 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000874714 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000874714 588__ $$aDataset connected to CrossRef
000874714 7001_ $$0P:(DE-HGF)0$$aPallast, Niklas$$b1
000874714 7001_ $$0P:(DE-HGF)0$$aWieters, Frederique$$b2
000874714 7001_ $$0P:(DE-HGF)0$$aBaues, Mayan$$b3
000874714 7001_ $$0P:(DE-Juel1)176651$$aHoehn, Mathias$$b4$$ufzj
000874714 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b5$$ufzj
000874714 773__ $$0PERI:(DE-600)2541897-X$$a10.1007/s12975-020-00802-3$$p87-97$$tTranslational stroke research$$v12$$x1868-601X$$y2021
000874714 8564_ $$uhttps://juser.fz-juelich.de/record/874714/files/Aswendt2021_Article_LesionSize-AndLocation-Depende-1.pdf$$yOpenAccess
000874714 909CO $$ooai:juser.fz-juelich.de:874714$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176651$$aForschungszentrum Jülich$$b4$$kFZJ
000874714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
000874714 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000874714 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000874714 9141_ $$y2020
000874714 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874714 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874714 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRANSL STROKE RES : 2017
000874714 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874714 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874714 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874714 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bTRANSL STROKE RES : 2017
000874714 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874714 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874714 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000874714 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874714 920__ $$lyes
000874714 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000874714 980__ $$ajournal
000874714 980__ $$aVDB
000874714 980__ $$aI:(DE-Juel1)INM-3-20090406
000874714 980__ $$aUNRESTRICTED
000874714 9801_ $$aFullTexts