000874723 001__ 874723
000874723 005__ 20210104120135.0
000874723 0247_ $$2doi$$a10.1007/s12021-020-09454-y
000874723 0247_ $$2ISSN$$a1539-2791
000874723 0247_ $$2ISSN$$a1559-0089
000874723 0247_ $$2Handle$$a2128/26617
000874723 0247_ $$2altmetric$$aaltmetric:76252088
000874723 0247_ $$2pmid$$a32067196
000874723 0247_ $$2WOS$$aWOS:000516229200001
000874723 037__ $$aFZJ-2020-01635
000874723 082__ $$a540
000874723 1001_ $$0P:(DE-HGF)0$$aBolt, Taylor$$b0$$eCorresponding author
000874723 245__ $$aOntological Dimensions of Cognitive-Neural Mappings
000874723 260__ $$aNew York, NY$$bSpringer$$c2020
000874723 3367_ $$2DRIVER$$aarticle
000874723 3367_ $$2DataCite$$aOutput Types/Journal article
000874723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609249656_9888
000874723 3367_ $$2BibTeX$$aARTICLE
000874723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874723 3367_ $$00$$2EndNote$$aJournal Article
000874723 520__ $$aThe growing literature reporting results of cognitive-neural mappings has increased calls for an adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as relevant dimensions that might contribute to such an ontology are not yet agreed upon. We propose that any candidate dimensions should be evaluated on their ability to explain observed differences in functional neuroimaging activation patterns. In this study, we use a large sample of task-based functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy to identify these dimensions. First, using a data-driven dimension reduction approach and multivariate distance matrix regression (MDMR), we quantify the variance among activation maps that is explained by existing ontological dimensions. We find that 'task paradigm' categories explain more variance among task-activation maps than other dimensions, including latent cognitive categories. Surprisingly, 'study ID', or the study from which each activation map was reported, explained close to 50% of the variance in activation patterns. Using a clustering approach that allows for overlapping clusters, we derived data-driven latent activation states, associated with re-occurring configurations of the canonical frontoparietal, salience, sensory-motor, and default mode network activation patterns. Importantly, with only four data-driven latent dimensions, one can explain greater variance among activation maps than all conventional ontological dimensions combined. These latent dimensions may inform a data-driven cognitive ontology, and suggest that current descriptions of cognitive processes and the tasks used to elicit them do not accurately reflect activation patterns commonly observed in the human brain.
000874723 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000874723 588__ $$aDataset connected to CrossRef
000874723 7001_ $$0P:(DE-HGF)0$$aNomi, Jason S.$$b1
000874723 7001_ $$0P:(DE-HGF)0$$aArens, Rachel$$b2
000874723 7001_ $$0P:(DE-HGF)0$$aVij, Shruti G.$$b3
000874723 7001_ $$0P:(DE-HGF)0$$aRiedel, Michael$$b4
000874723 7001_ $$0P:(DE-HGF)0$$aSalo, Taylor$$b5
000874723 7001_ $$0P:(DE-HGF)0$$aLaird, Angela R.$$b6
000874723 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7
000874723 7001_ $$00000-0003-2278-8962$$aUddin, Lucina Q.$$b8$$eCorresponding author
000874723 773__ $$0PERI:(DE-600)2099780-2$$a10.1007/s12021-020-09454-y$$p451–463$$tNeuroinformatics$$v18$$x1559-0089$$y2020
000874723 8564_ $$uhttps://juser.fz-juelich.de/record/874723/files/Bolt2020_Article_OntologicalDimensionsOfCogniti-1.pdf$$yRestricted
000874723 8564_ $$uhttps://juser.fz-juelich.de/record/874723/files/Bolt_NeuroinformaticsRevision.pdf$$yPublished on 2020-02-18. Available in OpenAccess from 2021-02-18.$$zStatID:(DE-HGF)0510
000874723 909CO $$ooai:juser.fz-juelich.de:874723$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
000874723 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000874723 9141_ $$y2020
000874723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874723 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874723 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROINFORMATICS : 2017
000874723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874723 920__ $$lyes
000874723 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000874723 980__ $$ajournal
000874723 980__ $$aVDB
000874723 980__ $$aUNRESTRICTED
000874723 980__ $$aI:(DE-Juel1)INM-7-20090406
000874723 9801_ $$aFullTexts