001     874723
005     20210104120135.0
024 7 _ |a 10.1007/s12021-020-09454-y
|2 doi
024 7 _ |a 1539-2791
|2 ISSN
024 7 _ |a 1559-0089
|2 ISSN
024 7 _ |a 2128/26617
|2 Handle
024 7 _ |a altmetric:76252088
|2 altmetric
024 7 _ |a 32067196
|2 pmid
024 7 _ |a WOS:000516229200001
|2 WOS
037 _ _ |a FZJ-2020-01635
082 _ _ |a 540
100 1 _ |a Bolt, Taylor
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Ontological Dimensions of Cognitive-Neural Mappings
260 _ _ |a New York, NY
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609249656_9888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The growing literature reporting results of cognitive-neural mappings has increased calls for an adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as relevant dimensions that might contribute to such an ontology are not yet agreed upon. We propose that any candidate dimensions should be evaluated on their ability to explain observed differences in functional neuroimaging activation patterns. In this study, we use a large sample of task-based functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy to identify these dimensions. First, using a data-driven dimension reduction approach and multivariate distance matrix regression (MDMR), we quantify the variance among activation maps that is explained by existing ontological dimensions. We find that 'task paradigm' categories explain more variance among task-activation maps than other dimensions, including latent cognitive categories. Surprisingly, 'study ID', or the study from which each activation map was reported, explained close to 50% of the variance in activation patterns. Using a clustering approach that allows for overlapping clusters, we derived data-driven latent activation states, associated with re-occurring configurations of the canonical frontoparietal, salience, sensory-motor, and default mode network activation patterns. Importantly, with only four data-driven latent dimensions, one can explain greater variance among activation maps than all conventional ontological dimensions combined. These latent dimensions may inform a data-driven cognitive ontology, and suggest that current descriptions of cognitive processes and the tasks used to elicit them do not accurately reflect activation patterns commonly observed in the human brain.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nomi, Jason S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Arens, Rachel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vij, Shruti G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riedel, Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Salo, Taylor
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Laird, Angela R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 7
700 1 _ |a Uddin, Lucina Q.
|0 0000-0003-2278-8962
|b 8
|e Corresponding author
773 _ _ |a 10.1007/s12021-020-09454-y
|0 PERI:(DE-600)2099780-2
|p 451–463
|t Neuroinformatics
|v 18
|y 2020
|x 1559-0089
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/874723/files/Bolt2020_Article_OntologicalDimensionsOfCogniti-1.pdf
856 4 _ |y Published on 2020-02-18. Available in OpenAccess from 2021-02-18.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/874723/files/Bolt_NeuroinformaticsRevision.pdf
909 C O |o oai:juser.fz-juelich.de:874723
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROINFORMATICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21