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Abstract

The growing literature reporting results of cognitive-neural mappings has increased calls for an
adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as
relevant dimensions that might contribute to such an ontology are not yet agreed upon. We
propose that any candidate dimensions should be evaluated on their ability to explain observed
differences in functional neuroimaging activation patterns. In this study, we use a large sample of
task-based functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy
to identify these dimensions. First, using a data-driven dimension reduction approach and
multivariate distance matrix regression (MDMR), we quantify the variance among activation
maps that is explained by existing ontological dimensions. We find that “task paradigm’
categories explain more variance among task-activation maps than other dimensions, including
latent cognitive categories. Surprisingly, ‘study ID’, or the study from which each activation map
was reported, explained close to 50% of the variance in activation patterns. Using a clustering
approach that allows for overlapping clusters, we derived data-driven latent activation states,
associated with re-occurring configurations of the canonical frontoparietal, salience, sensory-
motor, and default mode network activation patterns. Importantly, with only four data-driven
latent dimensions, one can explain greater variance among activation maps than all conventional
ontological dimensions combined. These latent dimensions may inform a data-driven cognitive
ontology, and suggest that current descriptions of cognitive processes and the tasks used to elicit
them do not accurately reflect activation patterns commonly observed in the human brain.
Keywords: cognitive ontology, meta-analysis, fMRI, medial frontoparietal network, midcingulo-

insular network, lateral frontoparietal network, pericentral network



Introduction

The exponential growth of functional neuroimaging studies mapping constructs at the
psychological level to patterns of brain activity (cognitive-neural mappings) has led to issues
surrounding an adequate organizing ontology or taxonomy of these results %, An ontology of a
scientific domain serves both an organizational and descriptive function. In terms of
organization, an ontology provides a standardized framework for managing, sharing and
analyzing increasingly large databases of experimental analyses and data. Importantly, they also
serve to describe experimental results in terms of natural divisions or dimensions of the
phenomena under study. This function is particularly important for cognitive neuroscience,
where a central goal is to map constructs at the psychological level to phenomena studied at a
neurobiological level of analysis. The goal of this study was to identify data-driven dimensions
of a potential ontology based upon its ability to explain variability between patterns of brain
activity.

Important progress in the development of an ontology for cognitive-neural mappings has
been made using a combination of large-scale meta-analysis of task-based functional magnetic
resonance imaging (task-fMRI) activation maps and topic modeling °>~’. At a general level, these
studies map latent cognitive dimensions, derived from text documents >® or task-paradigm
descriptions 7, to patterns of brain activity. However, an important factor that needs to be
addressed for an ontology of cognitive-neural mappings is what cognitive features of the task-
fMRI environment drive the greatest differences in observed activation patterns. In other words,
an adequate ontology of cognitive-neural mappings needs to identify those features of the task-

fMRI experiment that explain the most variance among task-fMRI activation patterns.



To address this issue in a quantitative framework, we used a whole-brain representational
similarity analysis (RSA) approach 8. Using this approach, we quantified the spatial similarity
among whole-brain task-activation maps from the BrainMap database®. Using multivariate
distance matrix regression (MDMR)*, we predicted the variability between task-activation maps
by existing ontological categories of the BrainMap database. The fundamental assumption of this
approach is that the important features of the existing ontology are identified in terms of the
amount of variance they explain in task-activation map similarities.

Using the spatial similarity estimates among whole-brain task-activation maps, we also
explored the possibility of estimating latent ontological dimensions directly from these
similarities using a graph clustering approach. We took the opposite strategy of recent topic
modeling approaches >~. In this approach, latent cognitive dimensions are estimated from
experimental-descriptions and then projected onto patterns of brain activity °, or co-occurring
latent cognitive dimensions and patterns of brain activity are simultaneously estimated 7. In our
approach, we reversed this chain of analysis. Commonly recurring whole-brain activation
patterns, or activation states, were estimated directly from task-fMRI activation maps, and then
projected onto experiment descriptions for interpretation. This approach assumes that the quality
of a latent dimension is determined by how well these dimensions explain observable differences
in task-fMRI activation patterns. Thus, latent cognitive dimensions were determined not in terms
of their co-occurrence in text, but their co-occurrence with dominant whole-brain activation
states. Importantly, these dimensions may or may not map cleanly onto existing latent cognitive
dimensions.

Methods and Materials

Construction of Activation Maps from BrainMap Coordinates



At the time of the analysis, the BrainMap database ° contained 15900 experimental
contrasts from 3216 published manuscripts. Associated with each experimental contrast were the
coordinates of statistically significant peak-activation coordinates in MNI152 and Talairach
coordinate spaces. Coordinates in Talairach space were converted to MNI152 coordinates using
the transform described in Lancaster et al. 2’. The number of contrasts was reduced to ensure
that only experimental contrasts of interest were included in the analysis. The only type of
experimental contrast included in the analysis was a ‘normal mapping’ experiment, or
exclusively a contrast within healthy participant groups (e.g. no drug treatment). These criteria
resulted in a total number of 8919 experimental contrasts for the current analysis.

For each of the 8919 experimental contrasts, modeled activation maps were constructed
by placing a 12-mm FWHM Gaussian kernel around the center of each peak-activation
coordinate reported for each contrast. This kernel size is identical to a previous analysis of the
BrainMap database . Because the modeled activation maps are extremely sparse (i.e. consisting
mainly of zeros), they were sub-sampled by a power of 2 along the X, Y and Z directions for
computational feasibility. This sub-sampling resulted in 26459 voxel values per activation map.

Network Discovery using Non-Negative Matrix Factorization

To estimate the latent network activation estimates associated with each activation map,
we utilized sparse non-negative matrix factorization (sparse-NMF). The activation maps were
first vectorized and placed into a 26459 (voxel) x 8919 (activation map) matrix. This was then
input to the sparse-NMF algorithm to model the voxel x activation map matrix as the
multiplicative combination of a network matrix and network expression matrix. Each element of
both matrices was constrained to be >= 0. The network matrix (voxel x selected number of

networks) contains the voxel weights of each network. The network expression matrix (selected



number of networks x activation map) represents the latent network activation estimate of each
network for each activation map. The NMF algorithm implements the following minimization
objective:

. 1
miny<on<o f(W,H) = Z[|A— WHIZ (1)

where A is the voxel x activation map matrix, W is the network matrix, H is the network
expression matrix, and is the Frobenius norm of the residual of the W*H matrix projected onto
the A matrix.

The conventional estimation algorithm for NMF estimates elements of the network and
network expression matrix by minimizing the above objective using a multiplicative update rule
13 which is computationally infeasible given the dimensionality of the input matrix (26459 x
8919 matrix). Thus, we used a fast NMF estimation procedure using the block principal
pivoting/active set method described by Kim and Park 28 and implemented in MATLAB code

provided on their webpage (https://www.cc.gatech.edu/~hpark/nmfsoftware.php). We used a

variation of NMF, sparse-NMF, that adds an additional sparsity constraint imposed on the
network matrix (W matrix) by adding the L1 Norm of the sum of each column of the network
matrix to the minimization objective above (Eq. 1). The estimation algorithm searches for a local
minimum, and is thus initialization-dependent. Rather than using a random initialization of the
network and network expression matrix, we use a singular-value decomposition (SVD) of the
voxel x activation map matrix as the starting initialization of the algorithm described by
Boutsidis and Gallopoulos %°, and implemented by Sotiras et al. *. The code implemented was

provided on the following webpage: https://github.com/trigeorgis/Deep-Semi-

NMFE/blob/master/matlab/NNDSVD.m.
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The network expression estimates were used in the subsequent computation of task-
activation map dissimilarity. We chose a higher-order network solution of 70 networks,
comparable to previous analyses of the BrainMap database 18,

Prediction of Activation Map Dissimilarity with Task-Descriptive Categories

Dissimilarity Matrix Computation

Using the latent network activation estimates of the 70 networks we computed the
activation map x activation map dissimilarity matrix with the cosine distance metric,
representing the dissimilarity in latent network activation estimates between all activation maps.
The cosine distance metric was used over other possible distance metrics because it is
advantageous for high-dimensional and sparse data 3132, The pairwise dissimilarity between two
activation maps in network expression profiles could vary from 0 (perfect similarity) to 1 (no
similarity).

BrainMap Categories Predictor Matrix Preprocessing

Ontological categories of the BrainMap database fell into five domains: 1) analysis
decisions (subtraction vs. baseline contrast, and reported de-activation vs. activation), 2) stimulus
type (e.g. visual words, auditory stories, fixation cross, etc.), 3) response type (button press,
speech, finger tapping, etc.), 4) paradigm class (encoding, task-switching, counting, etc.), and 5)
behavioral domain (action execution, language semantics, working memory). For details of each

category, please see: http://www.brainmap.org/taxonomy/. For each domain, categories were

dummy-coded leaving the following variables as the reference variable for each domain: ‘words’
(stimulus type), “write’ (response type), ‘n-back’ (paradigm class), and

‘Perception.Vision.Shape’ (behavioral domain).
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Because the BrainMap categories (excluding analysis decisions) allow multi-label
classification (activation maps can have more than one sub-category), multi-label classifications
were treated as separate clusters. For example, an activation map classified as Action Inhibition
and Attention was treated as belonging to an Action Inhibition/Attention cluster, as opposed to
belonging to both an Action Inhibition and Attention cluster. This increased the number of
categories in the model, and allowed for more precise classifications. This substantially increased
the explanatory power of the model, in terms of the number of predictors. In addition, this
treatment of multi-label classifications allowed the model to distinguish between categories that
shared one experiment category, but differed in another experiment category. A small percentage
of activation maps belonged to multi-label categories with fewer than five members (N = 435 for
stimulus type; N = 61 for response type; N = 706 for paradigm class; N = 599 for behavioral
domain), and these multi-label categories were re-categorized as ‘unclassified.” Inclusion of
multi-label classifications without a membership size cutoff resulted in a rank-deficient model
(1508 variables), or a large set of perfectly multicollinear predictors.

Additional categories were also excluded from the analysis, including those categories
with high collinearity with another category (r >0.99; 14 categories), ‘Not Defined’ categories,
and multi-label categories that included a ‘None’ classification and a non-None classification.
The final dummy coded matrix contained a total of 603 dummy coded variables, including 163
stimulus type variables, 29 response type variables, 215 paradigm class variables, 194 behavioral
variables, and 2 analysis decision variables.

Multivariate Distance Matrix Regression

We used multivariate distance matrix regression (MDMR) 1% to model the variability in

whole-brain activation map dissimilarity explained by the dummy-coded category predictor



matrix. Computation of the unique explained variance associated with the five categorical
domains was carried out in a leave-one-out fashion. Each domain of categorical predictors was
added to the remaining set of categorical predictors to compute the unique explained variance
associated with each categorical domain.

Activation maps reported in the BrainMap database have a nested structure: multiple
activation maps are reported for the same study. To correct for this nesting in the BrainMap
database, explained variance estimates for each categorical domain were corrected using a
permutation test that respected study ID. The permutation test involved a nested reshuffling of
activation map labels within each study set. After each reshuffling, an R? estimate for each set of
predictors was computed to construct a null distribution of R? values. The p-value of the original
R? was then computed as the percentile of the original R? in the null distribution. The
permutation test was run 1000 times.

Graph Clustering Approach

Symmetric non-negative matrix factorization (SymNMF) applies the non-negative matrix
factorization framework to pairwise similarity matrices 1’. In the sparse-NMF algorithm
described above, the voxel*activation map matrix is factorized into a multiplicative combination
of a network matrix (W) and network expression matrix (H). In the symmetric-NMF framework,
the symmetric activation map*activation map similarity matrix (S) is factorized into a cluster
membership matrix (H) multiplied by itself. More formally, the symmetric-NMF minimizes the

following objective function:
. 2
Minyso|lS — HHT || (2)
where S is the activation map x activation map similarity matrix, H is the cluster membership

matrix, and is the Frobenius norm of the residual of the H*H™ matrix projected onto the S matrix.



Importantly, SymNMF allows for each activation map to have non-negative weights on more
than one cluster. Thus, an activation map can have varying degrees of membership for each
cluster. The MATLAB code implement for SymNMF was provided on the following webpage:
(https://github.com/andybaoxv/symnmf).

Determination of the Number of Clusters

To choose the optimal number of clusters, we used a repeated two-fold cross-validation
procedure for cluster sizes ranging from 2 to 20. First, 100 random split-half samples (n = 4459)
of the total sample of activation maps were generated. Next, the above SymNMF algorithm was
applied to all 100 split-half pairs. Finally, the average pairwise instability between the 100 split-
half cluster centroids was measured using an Amari-type quantity procedure developed by Wu et

al. 3 (https://github.com/bdgp/staNMF). The average instability, which can vary from 0 (perfect

stability) to 1 (no stability), was then plotted across all solutions to search for network solution
sizes with low instability.

Centroid Activation Patterns and Behavioral Decoding of Clusters

The resulting community partitions (i.e., clusters) at the two levels of resolution (c = 4
and ¢ = 7) were interpreted in terms of their centroid activation pattern and the BrainMap task-
descriptive categories. The centroid activation map of each cluster was computed in two steps: 1)
network expression profiles of each activation map within the cluster were averaged to yield a
centroid network expression profile, and 2) the centroid network expression profile was then

projected onto voxel space to create the centroid activation map using the following equation:

V =WxC (3)
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where V is 26459 (voxel) x 1 centroid activation map, W is the network matrix (from the NMF
solution), and C is the centroid network expression profile. For visualization, the missing voxel
values in the centroid activation map from the sub-sampling procedure described above were
interpolated using a penalized least squares procedure 34

(https://www.mathwaorks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-

d--2-d--3-d--n-d-arrays). The resulting images were then smoothed using a 6mm FWHM

Gaussian kernel.

Behavioral decoding of the clusters was performed using the task-descriptive categories
used in the MDMR analysis above. In addition to Stimulus Type, Response Type, Paradigm
Class, Behavioral Domain and Analysis Decisions, we used the following additional task-
descriptive categories: Stimulus Modality, Response Modality, Instruction, and External
Variable. Of note, some task-descriptive categories were labeled ‘None’ or ‘Unknown,” and were
excluded from the analysis. To behaviorally decode each cluster i for each task-descriptive
category s of all metadata categories, we computed the forward inference probability normalized

by the probability of that cluster:

(# of category s instances in cluster i)/(# of category s instances across all clusters) (4)

(# of activation maps in cluster i)/(# of activation maps)

where the numerator represents the Pr(Cluster | Category) and the denominator represents the
Pr(Cluster).

Visualization of Behavioral Decoding

Given the number of task-descriptive categories assessed (n = 144; the number of task-
descriptive categories without multi-label classification), we used a data-driven word cloud
visualization to illustrate the results. The word cloud visualization displays text with varying

sizes and colors throughout space in a visualization window. For each cluster, word locations

10
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were positioned by the ‘semantic closeness’ of each task-descriptive category. The size of the
text was proportional to the behavioral decoding result from equation (4). To estimate the
‘semantic closeness’ of the sub-categories we did the following: 1) counted the appearances of
all the sub-categories for each activation map to create a 144 (sub-category) x 8919 (activation
map) sub-category count matrix, 2) estimated the 144 x 144 sub-category distance matrix by
computing the pairwise Jaccard distance in the counts between all pairs of sub-categories, and 3)
projected the distances between all 144 sub-categories onto a two-dimensional subspace using a
nonmetric multidimensional scaling (MDS) algorithm using the mdscale scale function in

MATLAB (https://www.mathworks.com/help/stats/mdscale.html). Metadata categories were

distinguished by different colors. In many cases, the original word cloud visualization output
spatially overlapping sub-category terms. Thus, for clarity, we manually moved spatially
overlapping sub-category terms to reduce overlap, while respecting their original position along
the dimensions derived from the MDS solution. We used publicly available code for displaying
the word cloud visualization, provided on the following webpage:

(https://www.mathworks.com/matlabcentral/fileexchange/53016-wordcloud--classical-).

The data that support the findings of this study are available from www.BrainMap.org,

but restrictions apply to the availability of these data, which were used under license for the
current study.
Results
Outline of Approach

Our approach consisted of three general steps (Figure 1). First, sparse-NMF was applied
to task-fMRI activation maps (N = 8919) reconstructed from experiment-reported peak-

activation coordinates to derive a sparse ‘dictionary’ of brain networks. Spatial similarity

11
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estimates between activation maps could be computed at the voxel level, but this ignores spatial
dependence between voxels. As opposed to other techniques (e.g., independent component
analysis) for estimation of brain networks using the BrainMap database **'?, sparse-NMF
provides a data-driven network estimation technique uniquely suited for the data reported in the
BrainMap database: all data are positive (positive activation values) and sparse (a small number
of reported coordinates for each experiment). Sparse-NMF naturally leads to a parts-based
parcellation of the brain given its enforcement of positive weights 3, even under low signal-to-
noise conditions 4.

Second, we computed the spatial dissimilarity between the network activation estimates
to & construct an activation map*activation map dissimilarity matrix. This can be seen as a large-
scale whole-brain representational similarity analysis &, where dissimilarity estimates are
computed between large-scale activity patterns across the entire brain. We then predicted the
variability among activation maps from the experimenter-labeled ontological categories of the
BrainMap database using multiple distance matrix regression (MDMR) 1°. MDMR regresses a
distance matrix onto a set of continuous or categorical predictors, and has extensive use in
behavioral genomics *° and studies of individual differences in resting-state functional
connectivity (known as connectome-wide association studies) 1°. The parameter of interest from
this analysis was the explained variance estimate (R?) for five sets of ontological categories
provided by the BrainMap database: analysis decisions, response type, stimulus type, task-
paradigm class, and behavioral domain. These estimates provide information regarding what
features of the existing ontology drive the greatest differences in task-activation maps.

Third, we converted the dissimilarity matrix into a similarity matrix for graph-based

clustering. We used a graph clustering algorithm, known as symmetric non-negative matrix

12



factorization (Sym-NMF), that has been shown to outperform commonly-used spectral graph-
clustering algorithms 7. Importantly, Sym-NMF allows for overlapping communities of

activation maps. As noted above, the goal of this clustering analysis was to estimate potentially

overlapping whole-brain activation states. These states may prove useful as candidates for latent

dimensions of a new data-driven ontology of cognitive-neural mappings.

Sparse-NMF for Network Discovery
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Figure 1. lllustration of Data-Driven Approach. First, latent network activation estimates
were computed from activation maps derived from the BrainMap database using sparse-NMF.
Sparse-NMF decomposes the activation map matrix into a ‘Network Matrix’ of network voxel
weights, and a ‘Network Expression Matrix’ that reflects the activation estimates of all networks
for each map. Next, an activation map dissimilarity matrix was constructed from dissimilarity
estimates between latent network activation patterns for each map. With this computed
dissimilarity matrix, we then assessed existing ontological categories using MDMR, and derived
potential data-driven ontological categories using Sym-NMF.

NMF Results

In order to estimate the latent network activation estimates underlying each activation
map, we applied a sparse-NMF algorithm to the full sample of 8919 task-fMRI activation maps.
We derived a high-resolution network parcellation of 70 networks, the same high-model order
estimated in previous analyses of the BrainMap database %18, The spatial similarity of activation
maps replicated across alternative network solution sizes, as observed by the correlation between
dissimilarity estimates of a 70-network solution size with smaller and larger solutions: N =55, r
=0.91;N=60,r=0.93; N=65,r=0.96; N=75,r=0.95; N =80, r=0.94; N=85,r=0.92.
Visual inspection of the 70-network solution (Figure 2) revealed a sparse parcellation of cortical

and sub-cortical regions of the brain, corresponding to functionally relevant brain areas.
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Figure 2. 70-Network Parcellation. Visualization of the 70-network solution derived from the
sparse-NMF algorithm. Networks are visualized with separate random colors.

Prediction of Activation Map Dissimilarity from Existing Ontological Categories

MDMR to regresses the dissimilarity matrix onto a set of five ontological categories (analysis
decisions, stimulus type, response type, paradigm class, and behavioral domain) associated with

each task-activation map. €a

The BrainMap database contains nested data such that multiple task-activation maps are

reported for a single study. To correct for this nesting in the BrainMap database, individual
explained variance estimates for each categorical domain were corrected using a permutation test
that respected study 1D during permuting of task-activation map labels. Computation of the
explained variance associated with each of the five categorical domains was carried out in a
leave-one-out fashion. Each categorical domain was added to the remaining set of domains to
compute the unique explained variance associated with each categorical domain.

The explained variance accounted for by all categorical domains (Npredictors = 603) in the
model was 19.67%. The explained variance accounted for by analysis decisions (subtraction vs.

baseline contrasts, and reported activation vs. de-activations), controlling for other domains, was

15



0.49% (p = 0.001). The explained variance accounted for by stimulus type (all sub-categories of
the eight stimulus modality types), controlling for other domains, was 3.1% (p = 0.001). The
explained variance accounted for by response type, controlling for other domains, was 0.57% (p
=0.014). The explained variance accounted for by paradigm class, controlling for other
domains, was 4.17% (p = 0.001). The explained variance accounted for by behavioral domain,
controlling for other domains, was 3.71% (p = 0.001). In summary, all categorical domains,
which correspond to traditional ontological categories commonly used to describe cognitive-
neural mappings, accounted for less than 20% of explained variance in activation maps.

We also ran a second model using only study ID as a predictor and we found that study
ID, the study from which the task-activation map was reported, accounts for 44.71% of the
variance in task-activation map differences. The single predictor of study ID accounted for more
than twice the variance of the five categorical domains provided from the BrainMap database.

Identification of Re-occurring Whole-Brain Activation States

As the full set of available ontological categories explain a limited amount of variance
between whole-brain activation patterns, we next explored whether differences in whole-brain
activation patterns could be explained by a smaller set of latent whole-brain activation states. We
first applied a graph clustering approach, symmetric non-negative matrix factorization (Sym-
NMF), to derive overlapping clusters of task-activation maps. Overlap allows for the possibility
that a single task-activation map may represent a combination of multiple whole-brain activation
states. We then projected these latent dimensions onto the task-descriptive categories for
behavioral and cognitive interpretation.

To choose the optimal number of clusters, we used a cross-validation approach to identify

cluster sizes that exhibited stable cluster centroids across split-half samples. We repeated the

16



two-fold cross-validation procedure for cluster sizes ranging from 2 to 20. Examination of
average cluster centroid stability across cross-validation samples revealed two strong local
minima of stability at a cluster sizes of four (Mstabiliy = 0.043) and seven (Mstabiiity = 0.055)

(Figure 3). Thus, further analyses were carried out on these cluster solutions.
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Figure 3. Instability Across Cluster Number. Mean instability (with standard error bars)
across 100 random split-half samples for cluster numbers ranging from 2 to 20. Strong global
minima were present at a cluster of four and seven (indicated by a vertical red line).

In order to provide a functional interpretation of the clustering results, we computed the
centroid activation maps and the prevalence of BrainMap ontological categories in each cluster.

The centroid activation maps represent the weighted average activation pattern of the activation

17



maps within the cluster. The association of a BrainMap category with a cluster was computed as
the probability that BrainMap category appears given the cluster, normalized by the base
probability of the cluster (see Methods and Materials).

For the four-cluster solution, the centroid activation maps corresponded to functionally
relevant brain areas (Figure 4). The clusters included a visual/dorsal-parietal activation pattern
(Four Cluster 1; 4C1), frontoparietal activation pattern (4C2), a default mode network (DMN) or
medial frontoparietal activation pattern (4C3), and an auditory/motor activation pattern (4C4).
Consistent with previous reports of domain-general BOLD activation in anterior insula (Al) and
dorsomedial prefrontal cortex (DMPFC) *°, activation in the Al and thalamus was observed
across all centroid activation patterns. The BrainMap categories associated with the four clusters
are consistent with previous functional descriptions of these brain areas. 4C1 was associated with
paradigms requiring viewing and responding to or manipulating visual objects, including ‘mental
rotation’, visual shape perception, and “spatial cognition’. 4C2 was associated with paradigms
requiring a variety of complex high-level actions and behaviors, including ‘working-memory,’
‘action inhibition” and ‘language processing’. 4C3 was associated with paradigms requiring
recall/recognition of previous information, inferences regarding others’ behavior (“social
cognition’), and various affective states (e.g. sadness, fear, reward, etc.). In addition, consistent
with a DMN activation pattern, the activation maps within 4C3 were more likely to be reported
as ‘de-activations’. 4C4 was associated with paradigms requiring overt/covert motor responses,

along with listening or responding to auditory stimuli.
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C3: Affect/Introspection/Social (r2-0.0329)
3) Cognition: Memory (0.49)
4) Cognition: Social Cognition (0.49)

A A
-w A 5) Reward (0.47)
6) Interoception: Sexuality (0.45)
7) De-Activations (0.44)
8) Autobiographical Recall (0.44)
9) Affective Pictures (0.44)
' 10) Emotion: Other (0.43)

C4: Auditory/Motor (R2=0.0396)
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Most Associated
1) Clicks (0.80)
2) Finger Tapping (0.74)
3) Electromyography (EMG) (0.73)
4) Flexion/Extension (0.72)
5) Action: Execution (0.65)
6) Move (0.63)
7) Electricity (0.60)
8) Tactile Stimulation (0.58)
9) Perception: Audition (0.58)
10) Action Execution: Speech (0.58)

7) Delayed Match to Sample (0.50)
' 8) Task Switching (0.49)
’ 9) Orthographic Discrimination (0.47) 9) Tactile (0.00)
10) Word General (Overt) (0.46)

Least Associated
1) Music Cognition (0.05)
2) Swallow (0.05)
3) Music Comprehension (0.04)
4) Pain Monitor/Discrimination (0.46)
5) Clicks (0.04)
6) Heat (0.03)
7) Auditory (0.00)
8) Gustatory (0.00)
9) Tactile (0.00)

10) Visual (0.00)

Least Associated
1) Music (0.12)
2) Action: Execution (0.12)
3) Flexion/Extension (0.10)

4) Cognition: Working Memory (0.52) 4) Finger Tapping (0.09)

5) Clicks (0.08)

6) Electromyography (EMG) (0.05)
7) Auditory (0.00)

8) Gustatory (0.00)

10) Visual (0.00)

Least Associated

1) Clicks (0.07)

2) Flexion/Extension (0.07)
3) Action: Execution (0.07)
4) Mental Rotation (0.05)

5) Imagined Movement (0.05)
6) Finger Tapping (0.05)

7) Auditory (0.00)

8) Gustatory (0.00)

9) Tactile (0.00)

10) Visual (0.00)

Least Associated
1) N-back (0.09)
2) Encode (0.08)
3) Cognition: Memory (0.09)
4) Delayed Match to Sample (0.08)
5) Encoding (0.08)
6) Stroop-Color Word (0.06)
7) Auditory (0.00)
8) Gustatory (0.00)
9) Tactile (0.00)

10) Visual (0.00)

19



Figure 4. Centroid Activation Maps and Behavioral Decoding for Four-Cluster Solution
(BD = Behavioral Domain; PC = Paradigm Class; ExtVariable = External Variable; Stim =
Stimulus; Resp = Response). Centroid activation maps with preliminary interpretative
descriptions, and word cloud visualizations (presented to the right each centroid activation map)
for the four-cluster solution. Experimental descriptors were sized by the degree of association
with each cluster and their positions with respect to each other was determined by their ‘semantic
closeness’. Experimental descriptors were colored according to the metadata category they
belong to (e.g. Stimulus Modality, Behavioral Domain, etc.). A color key for each metadata
category is provided in the top-right of the figure. The centroid activation maps represent the
consistency of activation reported in each voxel across its cluster members (warmer colors
represent a greater number of activations recorded at the voxel across activation maps for that
cluster). Alongside each cluster label is the amount of unique explained variance that cluster
explains in the similarity BOLD activation patterns, controlling for the remaining clusters.

The seven-cluster solution presented a slightly more fine-grained partition of the four-
cluster solution. While 4C2 remained stable from the four-cluster to seven-cluster solution (7C7),
the other three clusters from the four-cluster solution were split into two separate clusters in the
seven-cluster solution. 4C4 in the four-cluster solution was split into two clusters with activation
predominantly in sensory/motor cortices (7C2) and auditory cortices (7C5). Consistent with
previous functional descriptions of these areas, the BrainMap categories associated with 7C2
included *‘action execution’, flexion/extension and tactile stimulation, and passive listening and
pitching monitoring/discrimination for 7C2.

4C3 in the four-cluster solution was split in the seven-cluster solution into two clusters
with activation predominantly in the DMN (7C4) and sub-cortical structures (basal ganglia and
amygdala; 7C6). Consistent with previous functional descriptions of these areas, the categories
associated with 7C4 included ‘theory of mind’, “social cognition’, and autobiographical recall,
and affective stimuli and long-term memory for 7C6.

4C1 in the four-cluster solution was split in the seven-cluster solution into visual (7C1)

and parietal-frontal clusters (7C3). Activation in 7C1 was predominantly observed in the visual
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cortex, with slightly weaker activation in the dorsal-parietal and frontal cortices. Activation in
7C3 was predominantly observed dorsal-parietal and frontal cortices, with slightly weaker
activation in the visual cortex. Categories associated with 7C1 included passive viewing
paradigms, including “action observation’, and visual shape perception, and perception of
moving objects. Task-descriptive categories associated with 7C3 included active viewing
paradigms, including ‘mental rotation’, “spatial cognition’, and delayed match to sample tasks.
An important observation apparent in the clustering solution is that BrainMap categories
‘distant’ in semantic space (farther apart in the word cloud) load strongly onto single activation
states. In other words, categories that are semantically “distant’, are often not so “distant’ in the
latent BOLD activation space. For example, consider the following two task paradigms: the
Stroop color word task, and an overt word generation task. The psychological processes
generally inferred to underlie these tasks include action inhibition 2 for the Stroop color word
task, and lexical processing 2! for a word generation task. However, the whole-brain activation
patterns of these paradigms are similar, as they both load strongly onto the same latent whole-
brain activation state: 4C4 in the four-cluster solution and 7C7 in the seven-cluster solution. This
suggests the neural response measured by task-fMRI is similar for the Stroop color word task
and word generation task. Thus, whole-brain activation states may be informative in terms of
mapping the similarity in functional anatomy between different cognitive or behavioral

processes.
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1) Word Generation: Covert (0.28)

2) Word Generation: Overt (0.27)

3) Stroop-Color Word (0.25)

4) Cognition: Language Phonology (0.22)

Least Associated

1) Delayed Match to Sample (0.02)
2) Perception: vision Motion (0.02)
3) Stroop-Color Word (0.02)

4) N-back (0.02)

5) Saccades (0.01)

6) Ocular (0.01)

7) Auditory (0.00)

8) Gustatory (0.00)

9) Tactile (0.00)
10) Visual (0.00)
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Figure 5. Centroid Activation Maps and Behavioral Decoding for Seven-Cluster Solution
(BD = Behavioral Domain; PC = Paradigm Class; ExtVariable = External Variable; Stim =
Stimulus; Resp = Response). Centroid activation maps with preliminary interpretative
descriptions, and word cloud visualizations (presented to the right each centroid activation map)
for the four-cluster solution.

Whole-Brain Activation State and BrainMap Category Comparison

To compare the explained variance from these latent whole-brain activation states to the
existing ontological categories provided by the BrainMap database, we conducted an MDMR
analysis regressing the weighted membership coefficients of the four- and seven-cluster
separately onto the activation map*activation map dissimilarity matrix. The total explained
variance for the four-cluster solution and seven-cluster solution were 20.95% (p = 0.001) and

34.37% (p = 0.001), respectively. Thus, both lower-order latent activation states (N =4 and N =
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7) explained a greater amount of variance in task-activation map dissimilarity than the full model

of existing ontological categories (N = 603). This difference in explained variance can be

visualized with a re-ordered activation map*activation map similarity matrix according to either

the latent activation states or two example categorical domains (Behavioral Domain and

Paradigm Class; Figure 5).
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Figure 6. Comparison of Latent Activation State Clusters and Task-Descriptive Category
Clusters. To visualize the differences in explained variance between the latent activation states
and two task-descriptive categories (Behavioral Domain and Paradigm Class), we visualized a
re-ordered activation map*activation map similarity matrix according to the latent activation
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state and task-descriptive categories. The re-ordered similarity matrices for the latent activation
state and task-descriptive categories were created by re-organizing each activation map in the
similarity matrix according to their dominant whole-brain activation state cluster (i.e. assignment
of each map to the cluster with the strongest loading) or Behavioral Domain/Paradigm Class.
The values in the similarity matrices vary from 0 (no similarity; cool colors) to 1 (max similarity;
warm colors). The red lines organized along the diagonal of the similarity matrix trace groups of
activation maps that belong to a single cluster according to their latent activation state or
Behavioral Domain/Paradigm Class category. Similarity matrices with brighter colors within the
red cluster lines, and cooler colors outside, correspond to more compact and well-separated
groups of task-activation maps.

Discussion

A driving goal of cognitive neuroscience is to generate and constrain theories and models
of cognitive processes using functional neuroimaging data. Directed at this goal, the primary aim
of this study was to identify the dominant cognitive dimensions upon which whole-brain blood-
oxygen-level dependent (BOLD) activation maps vary. In other words, what dimensions of the
task-fMRI experiment is the BOLD response most attuned do? Task-based fMRI research has
conventionally used a fluid set of ontological categories to interpret the differences between
activation maps. Using a novel analysis pipeline applied to the BrainMap database, we quantify
the variance explained by these existing ontological categories, describing various features of the
task-fMRI experiment. The full model of existing ontological categories (N = 603 predictors)
explained a moderate proportion of variance (R?= 0.197) in the similarities between activation
maps. We find that ‘stimulus type’, ‘paradigm class’ and ‘behavioral domain’ uniquely explain a
small (R?< 0.05), but non-trivial amount of variance in similarity between activation maps.

It is difficult to assess these explained variance estimates in terms of absolute value, as
the disparate quality of the activation maps (derived from peak-activation coordinates) place an

unknown upper limit on the variance explainable by the task-descriptive categories. However,
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we can make relative comparisons. We find that the observable domain of *paradigm class’ (or
task paradigm), explains the greatest amount of variance among the task-descriptive categories,
controlling for other domains, (R?= 0.0417). This suggests that differences in task experiments
drive the most observed differences in fMRI task-activation patterns over and above differences
in other domains (e.g. behavioral domain). Thus, researchers should be aware that the choice of
experimental task may be of more crucial importance than whether they are thought to be
eliciting the same purported cognitive or behavioral process. Surprisingly, a substantial portion
of variance in the similarity between activation maps can be explained by the study ID (R?=
0.447); over two times greater than the full set full model of task-descriptive categories (R?=
0.197). This can be for multiple reasons: 1) differences in peak-coordinate reporting, 2)
differences in pre-processing pipelines and scanner hardware, or 3) differences in significance
thresholding procedures 22. These differences in study ID may be reduced with the sharing of
unthreshold statistical maps 2, that avoids peak-coordinate reporting and thresholding
procedures °.

We assume that the quality of latent cognitive or behavioral descriptors for a task-fMRI
ontology is contingent upon how well these descriptors explain differences in BOLD activation
patterns. Thus, we attempt to derive a set of latent activation states and associated cognitive and
behavioral descriptors that maximize the explained variance between BOLD activation patterns.
With just a set of four (or seven) latent activation states with sensible cognitive interpretations,
we can explain a greater amount of variance in BOLD activation maps than the full set of
ontological categories of the BrainMap database (N = 603). One might argue that this is trivial:
one would expect that a solution built to maximize explained variance between activation

patterns will of course explain more variance than the a priori ontological categories. However,
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we do not believe this is trivial for two reasons: 1) though it is trivial fact that all clustering
algorithms, at a general level, estimate clusters that maximize explained variance, it is not trivial
that a low-dimensional clustering solution (N=4 or N = 7) can explain greater variance than the
high-dimensional task-descriptive categories (N = 603). Relatedly, 2) explained variance of
activation map dissimilarities should be our criterion for what constitutes an adequate ontology
of cognitive-neural mappings. For example, if a four-cluster solution explained 99% of the
variance in task-activation map dissimilarity, adding more ontological categories amounts to an
unnecessary overparameterization of this space.

The BrainMap categories associated with the latent activation states from the 4-cluster
and 7-cluster map onto plausible neurocognitive systems. The four latent activation states can be
generally described as object-viewing (4C1), higher-order cognition
(inhibition/control/language) (4C2), self-memory/affective/social (4C3), and auditory-
stimulus/motor-action (4C4) states. The seven latent activation states can be generally described
as passive object-viewing (7C1), sensory-motor (7C2), active object-viewing (7C3),
social/theory of mind (7C4), auditory (7C5), affective (7C6) and higher-order cognition (7C7).
Examination of the four-cluster and seven-cluster solutions centroid activation patterns revealed
a set of regions commonly activated across the BrainMap database. Consistent activation was
observed across regions that make up the traditionally described *“task-positive’ and “task-
negative’ activation/de-activation pattern 19242, The ‘task-positive’ activation pattern
traditionally includes elements of the lateral frontoparietal (DLPFC, SPC and DMPFC) and
salience or midcingulo-insular networks (dorsal anterior cingulate cortex and Al). Consistency of
activation was particularly predominant in the Al across all centroid activation maps, in accord

with previous studies demonstrating the ubiquity of Al activations across task paradigms . The

26



‘task-negative’ de-activation pattern, generally restricted to the DMN 2°, was represented in both
the four- and seven-cluster solution. Consistent with the ‘task-negative’ ascription, the activation
maps of these clusters were more likely to be reported as ‘de-activations’.

The current results could lead to potential refinements of the BrainMap taxonomical
structure. Our analyses lead to the conclusion that the ‘Paradigm Class’ classification provides
the most useful categorization of task-fMRI experiments, as opposed to a more theoretical
classification scheme (eg. Behavioral Domain). They also demonstrate that many sub-categories
within these classification schemes cut across conventional experimenter classifications. For
example, example, ‘Social Cognition’ in the ‘Cognition” domain is closely related to the
‘Gustation’ and “Sexuality” sub-categories in the ‘Interoception’ domain. We hope that analyses
such as those presented here may eventually be incorporated into revising the BrainMap
taxonomy.

Limitations

One objection to the current approach is that it is circular in some sense. According to
this objection, the use of conventional task-descriptive categories of cognitive functioning and
task paradigms for interpretation in the behavioral decoding analysis essentially reifies these
categories in our neural-driven categorization. Thus, the analysis relies on a circular inference. In
response, we agree that the mix of ordinary and technical terms codified in the BrainMap
experimental descriptors are relied upon in our descriptions of the data-driven categories, but
reliance on this terminology does not constitute circularity. The behavioral decoding analysis
maps clusters to their most representative experimental descriptors, but does not identify the
clusters with those experimental descriptors. For example, descriptions of complex physics

topics often rely on ordinary linguistic terminology, but this description does not then identify
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the physical systems themselves with these ordinary terms. In the same manner, describing the
data-derived categories in terms of their association with ordinary or current technical terms of
cognitive science does not constitute circularity. By examining the pattern of experimental
descriptors associated with each cluster, we may find pointers to an underlying neural process
that unifies these descriptors.

Due to the disparate representation of activation maps in the BrainMap database in terms
of peak-activation coordinates, the precision of the distinctions between possible clusters is
limited. However, the substantial sample size of reported task-fMRI experiments provided by the
BrainMap database is unmatched in terms of power and detailed experimental metadata. The
increasing size of databases containing unthresholded activation maps, such as NeuroVault %,
offers the potential for a more precise or fine-grained categorization using the approach applied
in this study. In addition, the task-activation maps in the BrainMap database were computed
using a variety of analytic approaches and experimental designs, which introduces an extra
source of variability among the activation maps that cannot be accounted for in our analysis.
Nevertheless, we hope the results presented here provide a starting point for a well-developed

ontology of cognitive-neural mappings.
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