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Abstract 
  
The growing literature reporting results of cognitive-neural mappings has increased calls for an 

adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as 

relevant dimensions that might contribute to such an ontology are not yet agreed upon. We 

propose that any candidate dimensions should be evaluated on their ability to explain observed 

differences in functional neuroimaging activation patterns. In this study, we use a large sample of 

task-based functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy 

to identify these dimensions. First, using a data-driven dimension reduction approach and 

multivariate distance matrix regression (MDMR), we quantify the variance among activation 

maps that is explained by existing ontological dimensions. We find that ‘task paradigm’ 

categories explain more variance among task-activation maps than other dimensions, including 

latent cognitive categories. Surprisingly, ‘study ID’, or the study from which each activation map 

was reported, explained close to 50% of the variance in activation patterns. Using a clustering 

approach that allows for overlapping clusters, we derived data-driven latent activation states, 

associated with re-occurring configurations of the canonical frontoparietal, salience, sensory-

motor, and default mode network activation patterns. Importantly, with only four data-driven 

latent dimensions, one can explain greater variance among activation maps than all conventional 

ontological dimensions combined. These latent dimensions may inform a data-driven cognitive 

ontology, and suggest that current descriptions of cognitive processes and the tasks used to elicit 

them do not accurately reflect activation patterns commonly observed in the human brain.    

Keywords: cognitive ontology, meta-analysis, fMRI, medial frontoparietal network, midcingulo-

insular network, lateral frontoparietal network, pericentral network 
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Introduction 
                   

The exponential growth of functional neuroimaging studies mapping constructs at the 

psychological level to patterns of brain activity (cognitive-neural mappings) has led to issues 

surrounding an adequate organizing ontology or taxonomy of these results 1–4. An ontology of a 

scientific domain serves both an organizational and descriptive function. In terms of 

organization, an ontology provides a standardized framework for managing, sharing and 

analyzing increasingly large databases of experimental analyses and data. Importantly, they also 

serve to describe experimental results in terms of natural divisions or dimensions of the 

phenomena under study. This function is particularly important for cognitive neuroscience, 

where a central goal is to map constructs at the psychological level to phenomena studied at a 

neurobiological level of analysis. The goal of this study was to identify data-driven dimensions 

of a potential ontology based upon its ability to explain variability between patterns of brain 

activity. 

Important progress in the development of an ontology for cognitive-neural mappings has 

been made using a combination of large-scale meta-analysis of task-based functional magnetic 

resonance imaging (task-fMRI) activation maps and topic modeling 5–7. At a general level, these 

studies map latent cognitive dimensions, derived from text documents 5,6 or task-paradigm 

descriptions 7, to patterns of brain activity. However, an important factor that needs to be 

addressed for an ontology of cognitive-neural mappings is what cognitive features of the task-

fMRI environment drive the greatest differences in observed activation patterns. In other words, 

an adequate ontology of cognitive-neural mappings needs to identify those features of the task-

fMRI experiment that explain the most variance among task-fMRI activation patterns. 
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         To address this issue in a quantitative framework, we used a whole-brain representational 

similarity analysis (RSA) approach 8. Using this approach, we quantified the spatial similarity 

among whole-brain task-activation maps from the BrainMap database9. Using multivariate 

distance matrix regression (MDMR)10, we predicted the variability between task-activation maps 

by existing ontological categories of the BrainMap database. The fundamental assumption of this 

approach is that the important features of the existing ontology are identified in terms of the 

amount of variance they explain in task-activation map similarities. 

Using the spatial similarity estimates among whole-brain task-activation maps, we also 

explored the possibility of estimating latent ontological dimensions directly from these 

similarities using a graph clustering approach. We took the opposite strategy of recent topic 

modeling approaches 5–7. In this approach, latent cognitive dimensions are estimated from 

experimental-descriptions and then projected onto patterns of brain activity 5, or co-occurring 

latent cognitive dimensions and patterns of brain activity are simultaneously estimated 6,7. In our 

approach, we reversed this chain of analysis. Commonly recurring whole-brain activation 

patterns, or activation states, were estimated directly from task-fMRI activation maps, and then 

projected onto experiment descriptions for interpretation. This approach assumes that the quality 

of a latent dimension is determined by how well these dimensions explain observable differences 

in task-fMRI activation patterns. Thus, latent cognitive dimensions were determined not in terms 

of their co-occurrence in text, but their co-occurrence with dominant whole-brain activation 

states. Importantly, these dimensions may or may not map cleanly onto existing latent cognitive 

dimensions. 

Methods and Materials 

 Construction of Activation Maps from BrainMap Coordinates 
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         At the time of the analysis, the BrainMap database 9 contained 15900 experimental 

contrasts from 3216 published manuscripts. Associated with each experimental contrast were the 

coordinates of statistically significant peak-activation coordinates in MNI152 and Talairach 

coordinate spaces. Coordinates in Talairach space were converted to MNI152 coordinates using 

the transform described in Lancaster et al. 27.  The number of contrasts was reduced to ensure 

that only experimental contrasts of interest were included in the analysis. The only type of 

experimental contrast included in the analysis was a ‘normal mapping’ experiment, or 

exclusively a contrast within healthy participant groups (e.g. no drug treatment). These criteria 

resulted in a total number of 8919 experimental contrasts for the current analysis.  

         For each of the 8919 experimental contrasts, modeled activation maps were constructed 

by placing a 12-mm FWHM Gaussian kernel around the center of each peak-activation 

coordinate reported for each contrast. This kernel size is identical to a previous analysis of the 

BrainMap database 11. Because the modeled activation maps are extremely sparse (i.e. consisting 

mainly of zeros), they were sub-sampled by a power of 2 along the X, Y and Z directions for 

computational feasibility. This sub-sampling resulted in 26459 voxel values per activation map. 

 Network Discovery using Non-Negative Matrix Factorization 
  
         To estimate the latent network activation estimates associated with each activation map, 

we utilized sparse non-negative matrix factorization (sparse-NMF). The activation maps were 

first vectorized and placed into a 26459 (voxel) x 8919 (activation map) matrix. This was then 

input to the sparse-NMF algorithm to model the voxel x activation map matrix as the 

multiplicative combination of a network matrix and network expression matrix. Each element of 

both matrices was constrained to be >= 0. The network matrix (voxel x selected number of 

networks) contains the voxel weights of each network. The network expression matrix (selected 
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number of networks x activation map) represents the latent network activation estimate of each 

network for each activation map. The NMF algorithm implements the following minimization 

objective: 

                      𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊≤0,𝐻𝐻≤0 𝑓𝑓(𝑊𝑊,𝐻𝐻) =  1
2
‖𝐴𝐴 −𝑊𝑊𝑊𝑊‖𝑓𝑓2      (1)  

  
where A is the voxel x activation map matrix, W is the network matrix, H is the network 

expression matrix, and is the Frobenius norm of the residual of the W*H matrix projected onto 

the A matrix. 

         The conventional estimation algorithm for NMF estimates elements of the network and 

network expression matrix by minimizing the above objective using a multiplicative update rule 

13, which is computationally infeasible given the dimensionality of the input matrix (26459 x 

8919 matrix). Thus, we used a fast NMF estimation procedure using the block principal 

pivoting/active set method described by Kim and Park 28 and implemented in MATLAB code 

provided on their webpage (https://www.cc.gatech.edu/~hpark/nmfsoftware.php). We used a 

variation of NMF, sparse-NMF, that adds an additional sparsity constraint imposed on the 

network matrix (W matrix) by adding the L1 Norm of the sum of each column of the network 

matrix to the minimization objective above (Eq. 1). The estimation algorithm searches for a local 

minimum, and is thus initialization-dependent. Rather than using a random initialization of the 

network and network expression matrix, we use a singular-value decomposition (SVD) of the 

voxel x activation map matrix as the starting initialization of the algorithm described by 

Boutsidis and Gallopoulos 29, and implemented by Sotiras et al. 30. The code implemented was 

provided on the following webpage: https://github.com/trigeorgis/Deep-Semi-

NMF/blob/master/matlab/NNDSVD.m. 

https://www.cc.gatech.edu/%7Ehpark/nmfsoftware.php)
https://github.com/trigeorgis/Deep-Semi-NMF/blob/master/matlab/NNDSVD.m
https://github.com/trigeorgis/Deep-Semi-NMF/blob/master/matlab/NNDSVD.m
https://github.com/trigeorgis/Deep-Semi-NMF/blob/master/matlab/NNDSVD.m
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         The network expression estimates were used in the subsequent computation of task-

activation map dissimilarity. We chose a higher-order network solution of 70 networks, 

comparable to previous analyses of the BrainMap database 11,18.  

Prediction of Activation Map Dissimilarity with Task-Descriptive Categories 

Dissimilarity Matrix Computation 
 

Using the latent network activation estimates of the 70 networks we computed the 

activation map x activation map dissimilarity matrix with the cosine distance metric, 

representing the dissimilarity in latent network activation estimates between all activation maps. 

The cosine distance metric was used over other possible distance metrics because it is 

advantageous for high-dimensional and sparse data 31,32. The pairwise dissimilarity between two 

activation maps in network expression profiles could vary from 0 (perfect similarity) to 1 (no 

similarity). 

BrainMap Categories Predictor Matrix Preprocessing 

         Ontological categories of the BrainMap database fell into five domains: 1) analysis 

decisions (subtraction vs. baseline contrast, and reported de-activation vs. activation), 2) stimulus 

type (e.g. visual words, auditory stories, fixation cross, etc.), 3) response type (button press, 

speech, finger tapping, etc.), 4) paradigm class (encoding, task-switching, counting, etc.), and 5) 

behavioral domain (action execution, language semantics, working memory). For details of each 

category, please see: http://www.brainmap.org/taxonomy/. For each domain, categories were 

dummy-coded leaving the following variables as the reference variable for each domain: ‘words’ 

(stimulus type), ‘write’ (response type), ‘n-back’ (paradigm class), and 

‘Perception.Vision.Shape’ (behavioral domain).  

http://www.brainmap.org/taxonomy/
http://www.brainmap.org/taxonomy/
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Because the BrainMap categories (excluding analysis decisions) allow multi-label 

classification (activation maps can have more than one sub-category), multi-label classifications 

were treated as separate clusters. For example, an activation map classified as Action Inhibition 

and Attention was treated as belonging to an Action Inhibition/Attention cluster, as opposed to 

belonging to both an Action Inhibition and Attention cluster. This increased the number of 

categories in the model, and allowed for more precise classifications. This substantially increased 

the explanatory power of the model, in terms of the number of predictors. In addition, this 

treatment of multi-label classifications allowed the model to distinguish between categories that 

shared one experiment category, but differed in another experiment category. A small percentage 

of activation maps belonged to multi-label categories with fewer than five members (N = 435 for 

stimulus type; N = 61 for response type; N = 706 for paradigm class; N = 599 for behavioral 

domain), and these multi-label categories were re-categorized as ‘unclassified.’ Inclusion of 

multi-label classifications without a membership size cutoff resulted in a rank-deficient model 

(1508 variables), or a large set of perfectly multicollinear predictors. 

         Additional categories were also excluded from the analysis, including those categories 

with high collinearity with another category (r >0.99; 14 categories), ‘Not Defined’ categories, 

and multi-label categories that included a ‘None’ classification and a non-None classification. 

The final dummy coded matrix contained a total of 603 dummy coded variables, including 163 

stimulus type variables, 29 response type variables, 215 paradigm class variables, 194 behavioral 

variables, and 2 analysis decision variables. 

Multivariate Distance Matrix Regression 

We used multivariate distance matrix regression (MDMR) 10 to model the variability in 

whole-brain activation map dissimilarity explained by the dummy-coded category predictor 
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matrix. Computation of the unique explained variance associated with the five categorical 

domains was carried out in a leave-one-out fashion. Each domain of categorical predictors was 

added to the remaining set of categorical predictors to compute the unique explained variance 

associated with each categorical domain. 

  Activation maps reported in the BrainMap database have a nested structure: multiple 

activation maps are reported for the same study. To correct for this nesting in the BrainMap 

database, explained variance estimates for each categorical domain were corrected using a 

permutation test that respected study ID. The permutation test involved a nested reshuffling of 

activation map labels within each study set. After each reshuffling, an R2 estimate for each set of 

predictors was computed to construct a null distribution of R2 values. The p-value of the original 

R2 was then computed as the percentile of the original R2 in the null distribution. The 

permutation test was run 1000 times. 

Graph Clustering Approach 

          Symmetric non-negative matrix factorization (SymNMF) applies the non-negative matrix 

factorization framework to pairwise similarity matrices 17. In the sparse-NMF algorithm 

described above, the voxel*activation map matrix is factorized into a multiplicative combination 

of a network matrix (W) and network expression matrix (H). In the symmetric-NMF framework, 

the symmetric activation map*activation map similarity matrix (S) is factorized into a cluster 

membership matrix (H) multiplied by itself. More formally, the symmetric-NMF minimizes the 

following objective function: 

             𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻≥0�|𝑆𝑆 −  𝐻𝐻𝐻𝐻𝑇𝑇|�
𝐹𝐹
2
                             (2) 

where S is the activation map x activation map similarity matrix, H is the cluster membership 

matrix, and is the Frobenius norm of the residual of the H*HT matrix projected onto the S matrix. 
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Importantly, SymNMF allows for each activation map to have non-negative weights on more 

than one cluster. Thus, an activation map can have varying degrees of membership for each 

cluster. The MATLAB code implement for SymNMF was provided on the following webpage: 

(https://github.com/andybaoxv/symnmf). 

Determination of the Number of Clusters 
 
         To choose the optimal number of clusters, we used a repeated two-fold cross-validation 

procedure for cluster sizes ranging from 2 to 20. First, 100 random split-half samples (n = 4459) 

of the total sample of activation maps were generated. Next, the above SymNMF algorithm was 

applied to all 100 split-half pairs. Finally, the average pairwise instability between the 100 split-

half cluster centroids was measured using an Amari-type quantity procedure developed by Wu et 

al. 33 (https://github.com/bdgp/staNMF). The average instability, which can vary from 0 (perfect 

stability) to 1 (no stability), was then plotted across all solutions to search for network solution 

sizes with low instability.  

Centroid Activation Patterns and Behavioral Decoding of Clusters 

         The resulting community partitions (i.e., clusters) at the two levels of resolution (c = 4 

and c = 7) were interpreted in terms of their centroid activation pattern and the BrainMap task-

descriptive categories. The centroid activation map of each cluster was computed in two steps: 1) 

network expression profiles of each activation map within the cluster were averaged to yield a 

centroid network expression profile, and 2) the centroid network expression profile was then 

projected onto voxel space to create the centroid activation map using the following equation: 

  

                             V = WxC                                      (3) 

  

https://github.com/bdgp/staNMF)
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where V is 26459 (voxel) x 1 centroid activation map, W is the network matrix (from the NMF 

solution), and C is the centroid network expression profile. For visualization, the missing voxel 

values in the centroid activation map from the sub-sampling procedure described above were 

interpolated using a penalized least squares procedure 34 

(https://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-

d--2-d--3-d--n-d-arrays). The resulting images were then smoothed using a 6mm FWHM 

Gaussian kernel. 

         Behavioral decoding of the clusters was performed using the task-descriptive categories 

used in the MDMR analysis above. In addition to Stimulus Type, Response Type, Paradigm 

Class, Behavioral Domain and Analysis Decisions, we used the following additional task-

descriptive categories: Stimulus Modality, Response Modality, Instruction, and External 

Variable. Of note, some task-descriptive categories were labeled ‘None’ or ‘Unknown,’ and were 

excluded from the analysis. To behaviorally decode each cluster i for each task-descriptive 

category s of all metadata categories, we computed the forward inference probability normalized 

by the probability of that cluster: 

  

          (# 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒔𝒔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖)/(# 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
(# 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖)/(# 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)    (4)    

  
where the numerator represents the Pr(Cluster | Category) and the denominator represents the 
Pr(Cluster). 
 
Visualization of Behavioral Decoding 
  
         Given the number of task-descriptive categories assessed (n = 144; the number of task-

descriptive categories without multi-label classification), we used a data-driven word cloud 

visualization to illustrate the results. The word cloud visualization displays text with varying 

sizes and colors throughout space in a visualization window. For each cluster, word locations 

https://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d--2-d--3-d--n-d-arrays)
https://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d--2-d--3-d--n-d-arrays)
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were positioned by the ‘semantic closeness’ of each task-descriptive category. The size of the 

text was proportional to the behavioral decoding result from equation (4). To estimate the 

‘semantic closeness’ of the sub-categories we did the following: 1) counted the appearances of 

all the sub-categories for each activation map to create a 144 (sub-category) x 8919 (activation 

map) sub-category count matrix, 2) estimated the 144 x 144 sub-category distance matrix by 

computing the pairwise Jaccard distance in the counts between all pairs of sub-categories, and 3) 

projected the distances between all 144 sub-categories onto a two-dimensional subspace using a 

nonmetric multidimensional scaling (MDS) algorithm using the mdscale scale function in 

MATLAB (https://www.mathworks.com/help/stats/mdscale.html). Metadata categories were 

distinguished by different colors. In many cases, the original word cloud visualization output 

spatially overlapping sub-category terms. Thus, for clarity, we manually moved spatially 

overlapping sub-category terms to reduce overlap, while respecting their original position along 

the dimensions derived from the MDS solution. We used publicly available code for displaying 

the word cloud visualization, provided on the following webpage: 

(https://www.mathworks.com/matlabcentral/fileexchange/53016-wordcloud--classical-). 

  The data that support the findings of this study are available from www.BrainMap.org, 

but restrictions apply to the availability of these data, which were used under license for the 

current study. 

Results 

Outline of Approach 

Our approach consisted of three general steps (Figure 1). First, sparse-NMF was applied 

to task-fMRI activation maps (N = 8919) reconstructed from experiment-reported peak-

activation coordinates to derive a sparse ‘dictionary’ of brain networks. Spatial similarity 

https://www.mathworks.com/help/stats/mdscale.html
https://www.mathworks.com/matlabcentral/fileexchange/53016-wordcloud--classical-)
http://www.brainmap.org/
http://www.brainmap.org/
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estimates between activation maps could be computed at the voxel level, but this ignores spatial 

dependence between voxels. As opposed to other techniques (e.g., independent component 

analysis) for estimation of brain networks using the BrainMap database 11,12, sparse-NMF 

provides a data-driven network estimation technique uniquely suited for the data reported in the 

BrainMap database: all data are positive (positive activation values) and sparse (a small number 

of reported coordinates for each experiment). Sparse-NMF naturally leads to a parts-based 

parcellation of the brain given its enforcement of positive weights 13, even under low signal-to-

noise conditions 14. 

Second, we computed the spatial dissimilarity between the network activation estimates 

to a construct an activation map*activation map dissimilarity matrix. This can be seen as a large-

scale whole-brain representational similarity analysis 8, where dissimilarity estimates are 

computed between large-scale activity patterns across the entire brain. We then predicted the 

variability among activation maps from the experimenter-labeled ontological categories of the 

BrainMap database using multiple distance matrix regression (MDMR) 10. MDMR regresses a 

distance matrix onto a set of continuous or categorical predictors, and has extensive use in 

behavioral genomics 15 and studies of individual differences in resting-state functional 

connectivity (known as connectome-wide association studies) 16. The parameter of interest from 

this analysis was the explained variance estimate (R2) for five sets of ontological categories 

provided by the BrainMap database: analysis decisions, response type, stimulus type, task-

paradigm class, and behavioral domain. These estimates provide information regarding what 

features of the existing ontology drive the greatest differences in task-activation maps. 

Third, we converted the dissimilarity matrix into a similarity matrix for graph-based 

clustering. We used a graph clustering algorithm, known as symmetric non-negative matrix 



13 

factorization (Sym-NMF), that has been shown to outperform commonly-used spectral graph-

clustering algorithms 17. Importantly, Sym-NMF allows for overlapping communities of 

activation maps. As noted above, the goal of this clustering analysis was to estimate potentially 

overlapping whole-brain activation states. These states may prove useful as candidates for latent 

dimensions of a new data-driven ontology of cognitive-neural mappings.  

 

 

 



14 

Figure 1. Illustration of Data-Driven Approach. First, latent network activation estimates 
were computed from activation maps derived from the BrainMap database using sparse-NMF. 
Sparse-NMF decomposes the activation map matrix into a ‘Network Matrix’ of network voxel 
weights, and a ‘Network Expression Matrix’ that reflects the activation estimates of all networks 
for each map. Next, an activation map dissimilarity matrix was constructed from dissimilarity 
estimates between latent network activation patterns for each map. With this computed 
dissimilarity matrix, we then assessed existing ontological categories using MDMR, and derived 
potential data-driven ontological categories using Sym-NMF. 
  
 

NMF Results 

         In order to estimate the latent network activation estimates underlying each activation 

map, we applied a sparse-NMF algorithm to the full sample of 8919 task-fMRI activation maps. 

We derived a high-resolution network parcellation of 70 networks, the same high-model order 

estimated in previous analyses of the BrainMap database 11,18. The spatial similarity of activation 

maps replicated across alternative network solution sizes, as observed by the correlation between 

dissimilarity estimates of a 70-network solution size with smaller and larger solutions: N = 55, r 

= 0.91; N = 60, r = 0.93; N = 65, r = 0.96; N = 75, r = 0.95; N = 80, r = 0.94; N = 85, r = 0.92. 

Visual inspection of the 70-network solution (Figure 2) revealed a sparse parcellation of cortical 

and sub-cortical regions of the brain, corresponding to functionally relevant brain areas. 
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Figure 2. 70-Network Parcellation. Visualization of the 70-network solution derived from the 
sparse-NMF algorithm. Networks are visualized with separate random colors. 
 
  
Prediction of Activation Map Dissimilarity from Existing Ontological Categories 

         Using the latent network activation estimates of the 70 networks we computed the 

activation map ´ activation map dissimilarity matrix with the cosine distance metric, representing 

the dissimilarity in latent network activation estimates between all activation maps. We used 

MDMR to regresses the dissimilarity matrix onto a set of five ontological categories (analysis 

decisions, stimulus type, response type, paradigm class, and behavioral domain) associated with 

each task-activation map. Categories provided by the BrainMap database fell into five domains: 

1) analysis decisions (subtraction vs. baseline contrast, and reported de-activation vs. activation), 

2) stimulus type (e.g. visual words, auditory stories, fixation cross, etc.), 3) response type (button 

press, speech, finger tapping, etc.), 4) paradigm class (encoding, task-switching, counting, etc.), 

and 5) behavioral domain (action execution, language semantics, working memory). 

         The BrainMap database contains nested data such that multiple task-activation maps are 

reported for a single study. To correct for this nesting in the BrainMap database, individual 

explained variance estimates for each categorical domain were corrected using a permutation test 

that respected study ID during permuting of task-activation map labels. Computation of the 

explained variance associated with each of the five categorical domains was carried out in a 

leave-one-out fashion. Each categorical domain was added to the remaining set of domains to 

compute the unique explained variance associated with each categorical domain. 

         The explained variance accounted for by all categorical domains (Npredictors = 603) in the 

model was 19.67%. The explained variance accounted for by analysis decisions (subtraction vs. 

baseline contrasts, and reported activation vs. de-activations), controlling for other domains, was 
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0.49% (p = 0.001). The explained variance accounted for by stimulus type (all sub-categories of 

the eight stimulus modality types), controlling for other domains, was 3.1% (p = 0.001). The 

explained variance accounted for by response type, controlling for other domains, was 0.57% (p 

= 0.014).  The explained variance accounted for by paradigm class, controlling for other 

domains, was 4.17% (p = 0.001).  The explained variance accounted for by behavioral domain, 

controlling for other domains, was 3.71% (p = 0.001). In summary, all categorical domains, 

which correspond to traditional ontological categories commonly used to describe cognitive-

neural mappings, accounted for less than 20% of explained variance in activation maps. 

We also ran a second model using only study ID as a predictor and we found that study 

ID, the study from which the task-activation map was reported, accounts for 44.71% of the 

variance in task-activation map differences. The single predictor of study ID accounted for more 

than twice the variance of the five categorical domains provided from the BrainMap database. 

Identification of Re-occurring Whole-Brain Activation States 
  
         As the full set of available ontological categories explain a limited amount of variance 

between whole-brain activation patterns, we next explored whether differences in whole-brain 

activation patterns could be explained by a smaller set of latent whole-brain activation states. We 

first applied a graph clustering approach, symmetric non-negative matrix factorization (Sym-

NMF), to derive overlapping clusters of task-activation maps. Overlap allows for the possibility 

that a single task-activation map may represent a combination of multiple whole-brain activation 

states. We then projected these latent dimensions onto the task-descriptive categories for 

behavioral and cognitive interpretation. 

         To choose the optimal number of clusters, we used a cross-validation approach to identify 

cluster sizes that exhibited stable cluster centroids across split-half samples. We repeated the 
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two-fold cross-validation procedure for cluster sizes ranging from 2 to 20. Examination of 

average cluster centroid stability across cross-validation samples revealed two strong local 

minima of stability at a cluster sizes of four (Mstability = 0.043) and seven (Mstability = 0.055) 

(Figure 3). Thus, further analyses were carried out on these cluster solutions. 

  

 

Figure 3. Instability Across Cluster Number. Mean instability (with standard error bars) 
across 100 random split-half samples for cluster numbers ranging from 2 to 20. Strong global 
minima were present at a cluster of four and seven (indicated by a vertical red line). 
 
  

         In order to provide a functional interpretation of the clustering results, we computed the 

centroid activation maps and the prevalence of BrainMap ontological categories in each cluster. 

The centroid activation maps represent the weighted average activation pattern of the activation 
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maps within the cluster. The association of a BrainMap category with a cluster was computed as 

the probability that BrainMap category appears given the cluster, normalized by the base 

probability of the cluster (see Methods and Materials). 

         For the four-cluster solution, the centroid activation maps corresponded to functionally 

relevant brain areas (Figure 4). The clusters included a visual/dorsal-parietal activation pattern 

(Four Cluster 1; 4C1), frontoparietal activation pattern (4C2), a default mode network (DMN) or 

medial frontoparietal activation pattern (4C3), and an auditory/motor activation pattern (4C4). 

Consistent with previous reports of domain-general BOLD activation in anterior insula (AI) and 

dorsomedial prefrontal cortex (DMPFC) 19, activation in the AI and thalamus was observed 

across all centroid activation patterns. The BrainMap categories associated with the four clusters 

are consistent with previous functional descriptions of these brain areas. 4C1 was associated with 

paradigms requiring viewing and responding to or manipulating visual objects, including ‘mental 

rotation’, visual shape perception, and ‘spatial cognition’. 4C2 was associated with paradigms 

requiring a variety of complex high-level actions and behaviors, including ‘working-memory,’ 

‘action inhibition’ and ‘language processing’. 4C3 was associated with paradigms requiring 

recall/recognition of previous information, inferences regarding others’ behavior (‘social 

cognition’), and various affective states (e.g. sadness, fear, reward, etc.). In addition, consistent 

with a DMN activation pattern, the activation maps within 4C3 were more likely to be reported 

as ‘de-activations’. 4C4 was associated with paradigms requiring overt/covert motor responses, 

along with listening or responding to auditory stimuli.   
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Figure 4. Centroid Activation Maps and Behavioral Decoding for Four-Cluster Solution 
(BD = Behavioral Domain; PC = Paradigm Class; ExtVariable = External Variable; Stim = 
Stimulus; Resp = Response). Centroid activation maps with preliminary interpretative 
descriptions, and word cloud visualizations (presented to the right each centroid activation map) 
for the four-cluster solution. Experimental descriptors were sized by the degree of association 
with each cluster and their positions with respect to each other was determined by their ‘semantic 
closeness’. Experimental descriptors were colored according to the metadata category they 
belong to (e.g. Stimulus Modality, Behavioral Domain, etc.). A color key for each metadata 
category is provided in the top-right of the figure. The centroid activation maps represent the 
consistency of activation reported in each voxel across its cluster members (warmer colors 
represent a greater number of activations recorded at the voxel across activation maps for that 
cluster). Alongside each cluster label is the amount of unique explained variance that cluster 
explains in the similarity BOLD activation patterns, controlling for the remaining clusters. 
  

         The seven-cluster solution presented a slightly more fine-grained partition of the four-

cluster solution. While 4C2 remained stable from the four-cluster to seven-cluster solution (7C7), 

the other three clusters from the four-cluster solution were split into two separate clusters in the 

seven-cluster solution. 4C4 in the four-cluster solution was split into two clusters with activation 

predominantly in sensory/motor cortices (7C2) and auditory cortices (7C5). Consistent with 

previous functional descriptions of these areas, the BrainMap categories associated with 7C2 

included ‘action execution’, flexion/extension and tactile stimulation, and passive listening and 

pitching monitoring/discrimination for 7C2. 

4C3 in the four-cluster solution was split in the seven-cluster solution into two clusters 

with activation predominantly in the DMN (7C4) and sub-cortical structures (basal ganglia and 

amygdala; 7C6). Consistent with previous functional descriptions of these areas, the categories 

associated with 7C4 included ‘theory of mind’, ‘social cognition’, and autobiographical recall, 

and affective stimuli and long-term memory for 7C6. 

4C1 in the four-cluster solution was split in the seven-cluster solution into visual (7C1) 

and parietal-frontal clusters (7C3). Activation in 7C1 was predominantly observed in the visual 
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cortex, with slightly weaker activation in the dorsal-parietal and frontal cortices. Activation in 

7C3 was predominantly observed dorsal-parietal and frontal cortices, with slightly weaker 

activation in the visual cortex. Categories associated with 7C1 included passive viewing 

paradigms, including ‘action observation’, and visual shape perception, and perception of 

moving objects. Task-descriptive categories associated with 7C3 included active viewing 

paradigms, including ‘mental rotation’, ‘spatial cognition’, and delayed match to sample tasks. 

An important observation apparent in the clustering solution is that BrainMap categories 

‘distant’ in semantic space (farther apart in the word cloud) load strongly onto single activation 

states. In other words, categories that are semantically ‘distant’, are often not so ‘distant’ in the 

latent BOLD activation space. For example, consider the following two task paradigms: the 

Stroop color word task, and an overt word generation task. The psychological processes 

generally inferred to underlie these tasks include action inhibition 20 for the Stroop color word 

task, and lexical processing 21 for a word generation task. However, the whole-brain activation 

patterns of these paradigms are similar, as they both load strongly onto the same latent whole-

brain activation state: 4C4 in the four-cluster solution and 7C7 in the seven-cluster solution. This 

suggests the neural response measured by task-fMRI is similar for the Stroop color word task 

and word generation task. Thus, whole-brain activation states may be informative in terms of 

mapping the similarity in functional anatomy between different cognitive or behavioral 

processes. 

           
 
 



22 

 
Figure 5. Centroid Activation Maps and Behavioral Decoding for Seven-Cluster Solution 
(BD = Behavioral Domain; PC = Paradigm Class; ExtVariable = External Variable; Stim = 
Stimulus; Resp = Response). Centroid activation maps with preliminary interpretative 
descriptions, and word cloud visualizations (presented to the right each centroid activation map) 
for the four-cluster solution. 
 
  
Whole-Brain Activation State and BrainMap Category Comparison 
 
         To compare the explained variance from these latent whole-brain activation states to the 

existing ontological categories provided by the BrainMap database, we conducted an MDMR 

analysis regressing the weighted membership coefficients of the four- and seven-cluster 

separately onto the activation map*activation map dissimilarity matrix. The total explained 

variance for the four-cluster solution and seven-cluster solution were 20.95% (p = 0.001) and 

34.37% (p = 0.001), respectively. Thus, both lower-order latent activation states (N =4 and N = 
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7) explained a greater amount of variance in task-activation map dissimilarity than the full model 

of existing ontological categories (N = 603). This difference in explained variance can be 

visualized with a re-ordered activation map*activation map similarity matrix according to either 

the latent activation states or two example categorical domains (Behavioral Domain and 

Paradigm Class; Figure 5). 

  

 

Figure 6. Comparison of Latent Activation State Clusters and Task-Descriptive Category 
Clusters. To visualize the differences in explained variance between the latent activation states 
and two task-descriptive categories (Behavioral Domain and Paradigm Class), we visualized a 
re-ordered activation map*activation map similarity matrix according to the latent activation 
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state and task-descriptive categories. The re-ordered similarity matrices for the latent activation 
state and task-descriptive categories were created by re-organizing each activation map in the 
similarity matrix according to their dominant whole-brain activation state cluster (i.e. assignment 
of each map to the cluster with the strongest loading) or Behavioral Domain/Paradigm Class. 
The values in the similarity matrices vary from 0 (no similarity; cool colors) to 1 (max similarity; 
warm colors). The red lines organized along the diagonal of the similarity matrix trace groups of 
activation maps that belong to a single cluster according to their latent activation state or 
Behavioral Domain/Paradigm Class category. Similarity matrices with brighter colors within the 
red cluster lines, and cooler colors outside, correspond to more compact and well-separated 
groups of task-activation maps. 
 
 
Discussion 
 
         A driving goal of cognitive neuroscience is to generate and constrain theories and models 

of cognitive processes using functional neuroimaging data. Directed at this goal, the primary aim 

of this study was to identify the dominant cognitive dimensions upon which whole-brain blood-

oxygen-level dependent (BOLD) activation maps vary. In other words, what dimensions of the 

task-fMRI experiment is the BOLD response most attuned do? Task-based fMRI research has 

conventionally used a fluid set of ontological categories to interpret the differences between 

activation maps. Using a novel analysis pipeline applied to the BrainMap database, we quantify 

the variance explained by these existing ontological categories, describing various features of the 

task-fMRI experiment. The full model of existing ontological categories (N = 603 predictors) 

explained a moderate proportion of variance (R2 = 0.197) in the similarities between activation 

maps. We find that ‘stimulus type’, ‘paradigm class’ and ‘behavioral domain’ uniquely explain a 

small (R2 < 0.05), but non-trivial amount of variance in similarity between activation maps. 

It is difficult to assess these explained variance estimates in terms of absolute value, as 

the disparate quality of the activation maps (derived from peak-activation coordinates) place an 

unknown upper limit on the variance explainable by the task-descriptive categories. However, 
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we can make relative comparisons. We find that the observable domain of ‘paradigm class’ (or 

task paradigm), explains the greatest amount of variance among the task-descriptive categories, 

controlling for other domains, (R2 = 0.0417). This suggests that differences in task experiments 

drive the most observed differences in fMRI task-activation patterns over and above differences 

in other domains (e.g. behavioral domain). Thus, researchers should be aware that the choice of 

experimental task may be of more crucial importance than whether they are thought to be 

eliciting the same purported cognitive or behavioral process. Surprisingly, a substantial portion 

of variance in the similarity between activation maps can be explained by the study ID (R2 = 

0.447); over two times greater than the full set full model of task-descriptive categories (R2 = 

0.197). This can be for multiple reasons: 1) differences in peak-coordinate reporting, 2) 

differences in pre-processing pipelines and scanner hardware, or 3) differences in significance 

thresholding procedures 22. These differences in study ID may be reduced with the sharing of 

unthreshold statistical maps 23, that avoids peak-coordinate reporting and thresholding 

procedures 19. 

We assume that the quality of latent cognitive or behavioral descriptors for a task-fMRI 

ontology is contingent upon how well these descriptors explain differences in BOLD activation 

patterns. Thus, we attempt to derive a set of latent activation states and associated cognitive and 

behavioral descriptors that maximize the explained variance between BOLD activation patterns. 

With just a set of four (or seven) latent activation states with sensible cognitive interpretations, 

we can explain a greater amount of variance in BOLD activation maps than the full set of 

ontological categories of the BrainMap database (N = 603). One might argue that this is trivial: 

one would expect that a solution built to maximize explained variance between activation 

patterns will of course explain more variance than the a priori ontological categories. However, 
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we do not believe this is trivial for two reasons: 1) though it is trivial fact that all clustering 

algorithms, at a general level, estimate clusters that maximize explained variance, it is not trivial 

that a low-dimensional clustering solution (N= 4 or N = 7) can explain greater variance than the 

high-dimensional task-descriptive categories (N = 603). Relatedly, 2) explained variance of 

activation map dissimilarities should be our criterion for what constitutes an adequate ontology 

of cognitive-neural mappings. For example, if a four-cluster solution explained 99% of the 

variance in task-activation map dissimilarity, adding more ontological categories amounts to an 

unnecessary overparameterization of this space. 

The BrainMap categories associated with the latent activation states from the 4-cluster 

and 7-cluster map onto plausible neurocognitive systems. The four latent activation states can be 

generally described as object-viewing (4C1), higher-order cognition 

(inhibition/control/language) (4C2), self-memory/affective/social (4C3), and auditory-

stimulus/motor-action (4C4) states. The seven latent activation states can be generally described 

as passive object-viewing (7C1), sensory-motor (7C2), active object-viewing (7C3), 

social/theory of mind (7C4), auditory (7C5), affective (7C6) and higher-order cognition (7C7). 

Examination of the four-cluster and seven-cluster solutions centroid activation patterns revealed 

a set of regions commonly activated across the BrainMap database. Consistent activation was 

observed across regions that make up the traditionally described ‘task-positive’ and ‘task-

negative’ activation/de-activation pattern 19,24,25. The ‘task-positive’ activation pattern 

traditionally includes elements of the lateral frontoparietal (DLPFC, SPC and DMPFC) and 

salience or midcingulo-insular networks (dorsal anterior cingulate cortex and AI). Consistency of 

activation was particularly predominant in the AI across all centroid activation maps, in accord 

with previous studies demonstrating the ubiquity of AI activations across task paradigms 26. The 
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‘task-negative’ de-activation pattern, generally restricted to the DMN 25, was represented in both 

the four- and seven-cluster solution. Consistent with the ‘task-negative’ ascription, the activation 

maps of these clusters were more likely to be reported as ‘de-activations’. 

The current results could lead to potential refinements of the BrainMap taxonomical 

structure. Our analyses lead to the conclusion that the ‘Paradigm Class’ classification provides 

the most useful categorization of task-fMRI experiments, as opposed to a more theoretical 

classification scheme (eg. Behavioral Domain). They also demonstrate that many sub-categories 

within these classification schemes cut across conventional experimenter classifications. For 

example, example, ‘Social Cognition’ in the ‘Cognition’ domain is closely related to the 

‘Gustation’ and ‘Sexuality’ sub-categories in the ‘Interoception’ domain. We hope that analyses 

such as those presented here may eventually be incorporated into revising the BrainMap 

taxonomy. 

Limitations  

         One objection to the current approach is that it is circular in some sense. According to 

this objection, the use of conventional task-descriptive categories of cognitive functioning and 

task paradigms for interpretation in the behavioral decoding analysis essentially reifies these 

categories in our neural-driven categorization. Thus, the analysis relies on a circular inference. In 

response, we agree that the mix of ordinary and technical terms codified in the BrainMap 

experimental descriptors are relied upon in our descriptions of the data-driven categories, but 

reliance on this terminology does not constitute circularity. The behavioral decoding analysis 

maps clusters to their most representative experimental descriptors, but does not identify the 

clusters with those experimental descriptors. For example, descriptions of complex physics 

topics often rely on ordinary linguistic terminology, but this description does not then identify 



28 

the physical systems themselves with these ordinary terms. In the same manner, describing the 

data-derived categories in terms of their association with ordinary or current technical terms of 

cognitive science does not constitute circularity. By examining the pattern of experimental 

descriptors associated with each cluster, we may find pointers to an underlying neural process 

that unifies these descriptors. 

         Due to the disparate representation of activation maps in the BrainMap database in terms 

of peak-activation coordinates, the precision of the distinctions between possible clusters is 

limited. However, the substantial sample size of reported task-fMRI experiments provided by the 

BrainMap database is unmatched in terms of power and detailed experimental metadata. The 

increasing size of databases containing unthresholded activation maps, such as NeuroVault 23,  

offers the potential for a more precise or fine-grained categorization using the approach applied 

in this study. In addition, the task-activation maps in the BrainMap database were computed 

using a variety of analytic approaches and experimental designs, which introduces an extra 

source of variability among the activation maps that cannot be accounted for in our analysis. 

Nevertheless, we hope the results presented here provide a starting point for a well-developed 

ontology of cognitive-neural mappings. 
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