001     874738
005     20240709081905.0
024 7 _ |a 10.1080/10420150.2019.1701468
|2 doi
024 7 _ |a 0033-7579
|2 ISSN
024 7 _ |a 1026-549X
|2 ISSN
024 7 _ |a 1029-4953
|2 ISSN
024 7 _ |a 1042-0150
|2 ISSN
024 7 _ |a 2331-3455
|2 ISSN
024 7 _ |a 2128/24618
|2 Handle
024 7 _ |a WOS:000522130000014
|2 WOS
037 _ _ |a FZJ-2020-01647
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 0
|e Corresponding author
|u fzj
245 _ _ |a On the conversion of NDP energy spectra into depth concentration profiles for thin-films all-solid-state batteries
260 _ _ |a London [u.a.]
|c 2020
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611148871_3582
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A three-step numerical procedure has been developed, which facilitates the conversion of NDP energy spectra into lithium concentration depth profiles for thin-film Li-ion batteries. The procedure is based on Monte Carlo modeling of the energy loss of charged particles (ions) in the solid media, using the publically available SRIM/TRIM software. For the energy-to-depth conversion, the battery stack has been split into finite volume elements. Each finite volume element becomes a source of ions according to the employed nuclear reaction. Ions loos energy when they move across the battery stack towards the detector. The as-obtained simulated spectra have been compared with the experimentally measured spectra. The thicknesses of the battery stack layers were estimated by minimizing the deviation between the simulated and measured spectra. Subsequently, a relation between the average energy of detected ions and the depth of the corresponding finite volume element, yielding a calibration function, was used to relate that particular part of the spectra with the depth of its source. At the final stage, a Bayesian estimator was used to find the distribution of lithium at a particular depth. The developed procedure was applied to a practically relevant case study of Si immobilization in the LPO electrolyte of all-solid-state thin-film batteries. It is shown that the lithium immobilization process in the LPO electrolyte is responsible for the battery degradation process.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chen, Chunguang
|0 P:(DE-Juel1)172735
|b 1
|u fzj
700 1 _ |a Jiang, Ming
|0 P:(DE-Juel1)173744
|b 2
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|u fzj
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 4
|u fzj
773 _ _ |a 10.1080/10420150.2019.1701468
|g Vol. 175, no. 3-4, p. 367 - 382
|0 PERI:(DE-600)2023435-1
|n 3-4
|p 367 - 382
|t Radiation effects and defects in solids
|v 175
|y 2020
|x 1029-4953
856 4 _ |u https://juser.fz-juelich.de/record/874738/files/Danilov%2C%20Depth%20profiles%20calculations%2C%20DCJEN2019%20JUSER%20.pdf
|y Published on 2020-03-30. Available in OpenAccess from 2021-03-30.
856 4 _ |u https://juser.fz-juelich.de/record/874738/files/Danilov%2C%20Depth%20profiles%20calculations%2C%20DCJEN2019%20JUSER%20.pdf?subformat=pdfa
|x pdfa
|y Published on 2020-03-30. Available in OpenAccess from 2021-03-30.
909 C O |o oai:juser.fz-juelich.de:874738
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173719
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172735
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)172735
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173744
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173744
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Uni Eindhoven
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Uni of Technoloy, Sydney, Australia
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIAT EFF DEFECT S : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21