000874809 001__ 874809
000874809 005__ 20210130004759.0
000874809 0247_ $$2doi$$a10.1038/s41598-019-50164-6
000874809 0247_ $$2Handle$$a2128/24623
000874809 0247_ $$2pmid$$apmid:31554839
000874809 0247_ $$2WOS$$aWOS:000487586600003
000874809 0247_ $$2altmetric$$aaltmetric:79111407
000874809 037__ $$aFZJ-2020-01657
000874809 082__ $$a600
000874809 1001_ $$00000-0003-3809-7795$$aCors, Marian$$b0
000874809 245__ $$aSpatial distribution of core monomers in acrylamide-based core-shell microgels with linear swelling behaviour
000874809 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000874809 3367_ $$2DRIVER$$aarticle
000874809 3367_ $$2DataCite$$aOutput Types/Journal article
000874809 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585667360_29271
000874809 3367_ $$2BibTeX$$aARTICLE
000874809 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874809 3367_ $$00$$2EndNote$$aJournal Article
000874809 520__ $$aThe peculiar linear temperature-dependent swelling of core-shell microgels has been conjectured to be linked to the core-shell architecture combining materials of different transition temperatures. Here the structure of pNIPMAM-core and pNNPAM-shell microgels in water is studied as a function of temperature using small-angle neutron scattering with selective deuteration. Photon correlation spectroscopy is used to scrutinize the swelling behaviour of the colloidal particles and reveals linear swelling. Moreover, these experiments are also employed to check the influence of deuteration on swelling. Using a form-free multi-shell reverse Monte Carlo approach, the small-angle scattering data are converted into radial monomer density profiles. The comparison of ‘core-only’ particles consisting of identical cores to fully hydrogenated core-shell microgels, and finally to H-core/D-shell architectures unambiguously shows that core and shell monomers display gradient profiles with strong interpenetration, leading to cores embedded in shells which are bigger than their isolated ‘core-only’ precursor particles. This surprising result is further generalized to different core cross-linker contents, for temperature ranges encompassing both transitions. Our analysis demonstrates that the internal structure of pNIPMAM-core and pNNPAM-shell microgels is heterogeneous and strongly interpenetrated, presumably allowing only progressive core swelling at temperatures intermediate to both transition temperatures, thus promoting linear swelling behaviour.
000874809 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000874809 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000874809 588__ $$aDataset connected to CrossRef
000874809 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000874809 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000874809 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000874809 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000874809 7001_ $$00000-0002-0020-1334$$aWrede, Oliver$$b1
000874809 7001_ $$00000-0002-8827-6807$$aWiehemeier, Lars$$b2
000874809 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b3$$ufzj
000874809 7001_ $$00000-0001-7523-5160$$aCousin, Fabrice$$b4
000874809 7001_ $$00000-0002-2394-5846$$aHellweg, Thomas$$b5$$eCorresponding author
000874809 7001_ $$0P:(DE-HGF)0$$aOberdisse, Julian$$b6$$eCorresponding author
000874809 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-50164-6$$gVol. 9, no. 1, p. 13812$$n1$$p13812$$tScientific reports$$v9$$x2045-2322$$y2019
000874809 8564_ $$uhttps://juser.fz-juelich.de/record/874809/files/s41598-019-50164-6.pdf$$yOpenAccess
000874809 8564_ $$uhttps://juser.fz-juelich.de/record/874809/files/s41598-019-50164-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874809 909CO $$ooai:juser.fz-juelich.de:874809$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000874809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b3$$kFZJ
000874809 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000874809 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000874809 9141_ $$y2020
000874809 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874809 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874809 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874809 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874809 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000874809 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000874809 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874809 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874809 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874809 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874809 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874809 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874809 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874809 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874809 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874809 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874809 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874809 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874809 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874809 920__ $$lyes
000874809 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000874809 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000874809 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000874809 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000874809 980__ $$ajournal
000874809 980__ $$aVDB
000874809 980__ $$aUNRESTRICTED
000874809 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000874809 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000874809 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000874809 980__ $$aI:(DE-588b)4597118-3
000874809 9801_ $$aFullTexts