000874811 001__ 874811
000874811 005__ 20210112100835.0
000874811 0247_ $$2doi$$a10.1103/PhysRevApplied.13.034068
000874811 0247_ $$2Handle$$a2128/24620
000874811 0247_ $$2WOS$$aWOS:000522199100002
000874811 037__ $$aFZJ-2020-01659
000874811 082__ $$a530
000874811 1001_ $$0P:(DE-HGF)0$$aHollmann, Arne$$b0
000874811 245__ $$aLarge, Tunable Valley Splitting and Single-Spin Relaxation Mechanisms in a Si / Si x Ge 1 − x Quantum Dot
000874811 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2020
000874811 3367_ $$2DRIVER$$aarticle
000874811 3367_ $$2DataCite$$aOutput Types/Journal article
000874811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610374009_21200
000874811 3367_ $$2BibTeX$$aARTICLE
000874811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874811 3367_ $$00$$2EndNote$$aJournal Article
000874811 520__ $$aValley splitting is a key feature of silicon-based spin qubits. Quantum dots in Si/SixGe1−x heterostructures reportedly suffer from a relatively low valley splitting, limiting the operation temperature and the scalability of such qubit devices. Here, we demonstrate a robust and large valley splitting exceeding 200 μeV in a gate-defined single quantum dot, hosted in molecular-beam-epitaxy-grown 68Si/SixGe1−x. The valley splitting is monotonically and reproducibly tunable up to 15% by gate voltages, originating from a 6-nm lateral displacement of the quantum dot. We observe static spin relaxation times T1>1 s at low magnetic fields in our device containing an integrated nanomagnet. At higher magnetic fields, T1 is limited by the valley hotspot and by phonon noise coupling to intrinsic and artificial spin-orbit coupling, including phonon bottlenecking.
000874811 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000874811 588__ $$aDataset connected to CrossRef
000874811 7001_ $$0P:(DE-HGF)0$$aStruck, Tom$$b1
000874811 7001_ $$0P:(DE-Juel1)165323$$aLangrock, Veit$$b2
000874811 7001_ $$0P:(DE-HGF)0$$aSchmidbauer, Andreas$$b3
000874811 7001_ $$0P:(DE-HGF)0$$aSchauer, Floyd$$b4
000874811 7001_ $$0P:(DE-HGF)0$$aLeonhardt, Tim$$b5
000874811 7001_ $$0P:(DE-HGF)0$$aSawano, Kentarou$$b6
000874811 7001_ $$0P:(DE-HGF)0$$aRiemann, Helge$$b7
000874811 7001_ $$0P:(DE-HGF)0$$aAbrosimov, Nikolay V.$$b8
000874811 7001_ $$0P:(DE-HGF)0$$aBougeard, Dominique$$b9
000874811 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars$$b10$$eCorresponding author
000874811 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.13.034068$$gVol. 13, no. 3, p. 034068$$n3$$p034068$$tPhysical review applied$$v13$$x2331-7019$$y2020
000874811 8564_ $$uhttps://juser.fz-juelich.de/record/874811/files/PhysRevApplied.13.034068.pdf$$yOpenAccess
000874811 8564_ $$uhttps://juser.fz-juelich.de/record/874811/files/PhysRevApplied.13.034068.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874811 909CO $$ooai:juser.fz-juelich.de:874811$$pdnbdelivery$$popenaire$$pdriver$$pVDB$$popen_access
000874811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165323$$aForschungszentrum Jülich$$b2$$kFZJ
000874811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b10$$kFZJ
000874811 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000874811 9141_ $$y2020
000874811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874811 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000874811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2017
000874811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874811 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874811 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874811 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874811 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874811 920__ $$lyes
000874811 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000874811 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000874811 980__ $$ajournal
000874811 980__ $$aVDB
000874811 980__ $$aI:(DE-Juel1)PGI-2-20110106
000874811 980__ $$aI:(DE-Juel1)PGI-11-20170113
000874811 980__ $$aUNRESTRICTED
000874811 9801_ $$aFullTexts