Hauptseite > Publikationsdatenbank > Large, Tunable Valley Splitting and Single-Spin Relaxation Mechanisms in a Si / Si x Ge 1 − x Quantum Dot > print |
001 | 874811 | ||
005 | 20210112100835.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.13.034068 |2 doi |
024 | 7 | _ | |a 2128/24620 |2 Handle |
024 | 7 | _ | |a WOS:000522199100002 |2 WOS |
037 | _ | _ | |a FZJ-2020-01659 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hollmann, Arne |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Large, Tunable Valley Splitting and Single-Spin Relaxation Mechanisms in a Si / Si x Ge 1 − x Quantum Dot |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2020 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610374009_21200 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Valley splitting is a key feature of silicon-based spin qubits. Quantum dots in Si/SixGe1−x heterostructures reportedly suffer from a relatively low valley splitting, limiting the operation temperature and the scalability of such qubit devices. Here, we demonstrate a robust and large valley splitting exceeding 200 μeV in a gate-defined single quantum dot, hosted in molecular-beam-epitaxy-grown 68Si/SixGe1−x. The valley splitting is monotonically and reproducibly tunable up to 15% by gate voltages, originating from a 6-nm lateral displacement of the quantum dot. We observe static spin relaxation times T1>1 s at low magnetic fields in our device containing an integrated nanomagnet. At higher magnetic fields, T1 is limited by the valley hotspot and by phonon noise coupling to intrinsic and artificial spin-orbit coupling, including phonon bottlenecking. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Struck, Tom |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Langrock, Veit |0 P:(DE-Juel1)165323 |b 2 |
700 | 1 | _ | |a Schmidbauer, Andreas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Schauer, Floyd |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Leonhardt, Tim |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Sawano, Kentarou |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Riemann, Helge |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Abrosimov, Nikolay V. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Bougeard, Dominique |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Schreiber, Lars |0 P:(DE-Juel1)172641 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevApplied.13.034068 |g Vol. 13, no. 3, p. 034068 |0 PERI:(DE-600)2760310-6 |n 3 |p 034068 |t Physical review applied |v 13 |y 2020 |x 2331-7019 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874811/files/PhysRevApplied.13.034068.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874811/files/PhysRevApplied.13.034068.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:874811 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165323 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)172641 |
913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Collective States |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|