001     874811
005     20210112100835.0
024 7 _ |a 10.1103/PhysRevApplied.13.034068
|2 doi
024 7 _ |a 2128/24620
|2 Handle
024 7 _ |a WOS:000522199100002
|2 WOS
037 _ _ |a FZJ-2020-01659
082 _ _ |a 530
100 1 _ |a Hollmann, Arne
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Large, Tunable Valley Splitting and Single-Spin Relaxation Mechanisms in a Si / Si x Ge 1 − x Quantum Dot
260 _ _ |a College Park, Md. [u.a.]
|c 2020
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610374009_21200
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Valley splitting is a key feature of silicon-based spin qubits. Quantum dots in Si/SixGe1−x heterostructures reportedly suffer from a relatively low valley splitting, limiting the operation temperature and the scalability of such qubit devices. Here, we demonstrate a robust and large valley splitting exceeding 200 μeV in a gate-defined single quantum dot, hosted in molecular-beam-epitaxy-grown 68Si/SixGe1−x. The valley splitting is monotonically and reproducibly tunable up to 15% by gate voltages, originating from a 6-nm lateral displacement of the quantum dot. We observe static spin relaxation times T1>1 s at low magnetic fields in our device containing an integrated nanomagnet. At higher magnetic fields, T1 is limited by the valley hotspot and by phonon noise coupling to intrinsic and artificial spin-orbit coupling, including phonon bottlenecking.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Struck, Tom
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Langrock, Veit
|0 P:(DE-Juel1)165323
|b 2
700 1 _ |a Schmidbauer, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schauer, Floyd
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Leonhardt, Tim
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sawano, Kentarou
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Riemann, Helge
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Abrosimov, Nikolay V.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bougeard, Dominique
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schreiber, Lars
|0 P:(DE-Juel1)172641
|b 10
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.13.034068
|g Vol. 13, no. 3, p. 034068
|0 PERI:(DE-600)2760310-6
|n 3
|p 034068
|t Physical review applied
|v 13
|y 2020
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/874811/files/PhysRevApplied.13.034068.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874811/files/PhysRevApplied.13.034068.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:874811
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172641
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21