000874872 001__ 874872
000874872 005__ 20240712113234.0
000874872 0247_ $$2doi$$a10.1002/biot.201900088
000874872 0247_ $$2ISSN$$a1860-6768
000874872 0247_ $$2ISSN$$a1860-7314
000874872 0247_ $$2Handle$$a2128/24630
000874872 0247_ $$2pmid$$apmid:31471944
000874872 0247_ $$2WOS$$aWOS:000511444500003
000874872 037__ $$aFZJ-2020-01677
000874872 082__ $$a570
000874872 1001_ $$0P:(DE-HGF)0$$aHabicher, Tobias$$b0
000874872 245__ $$aEstablishing a Fed‐Batch Process for Protease Expression with Bacillus licheniformis in Polymer‐Based Controlled‐Release Microtiter Plates
000874872 260__ $$aWeinheim$$bWiley-VCH$$c2020
000874872 3367_ $$2DRIVER$$aarticle
000874872 3367_ $$2DataCite$$aOutput Types/Journal article
000874872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604410157_754
000874872 3367_ $$2BibTeX$$aARTICLE
000874872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874872 3367_ $$00$$2EndNote$$aJournal Article
000874872 520__ $$aIntroducing fed‐batch mode in early stages of development projects is crucial for establishing comparable conditions to industrial fed‐batch fermentation processes. Therefore, cost efficient and easy to use small‐scale fed‐batch systems that can be integrated into existing laboratory equipment and workflows are required. Recently, a novel polymer‐based controlled‐release fed‐batch microtiter plate is described. In this work, the polymer‐based controlled‐release fed‐batch microtiter plate is used to investigate fed‐batch cultivations of a protease producing Bacillus licheniformis culture. Therefore, the oxygen transfer rate (OTR) is online‐monitored within each well of the polymer‐based controlled‐release fed‐batch microtiter plate using a µRAMOS device. Cultivations in five individual polymer‐based controlled‐release fed‐batch microtiter plates of two production lots show good reproducibility with a mean coefficient of variation of 9.2%. Decreasing initial biomass concentrations prolongs batch phase while simultaneously postponing the fed‐batch phase. The initial liquid filling volume affects the volumetric release rate, which is directly translated in different OTR levels of the fed‐batch phase. An increasing initial osmotic pressure within the mineral medium decreases both glucose release and protease yield. With the volumetric glucose release rate as scale‐up criterion, microtiter plate‐ and shake flask‐based fed‐batch cultivations are highly comparable. On basis of the small‐scale fed‐batch cultivations, a mechanistic model is established and validated. Model‐based simulations coincide well with the experimentally acquired data.
000874872 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000874872 588__ $$aDataset connected to CrossRef
000874872 7001_ $$0P:(DE-Juel1)177930$$aRauls, Edward K. A.$$b1
000874872 7001_ $$0P:(DE-HGF)0$$aEgidi, Franziska$$b2
000874872 7001_ $$0P:(DE-HGF)0$$aKeil, Timm$$b3
000874872 7001_ $$0P:(DE-HGF)0$$aKlein, Tobias$$b4
000874872 7001_ $$0P:(DE-HGF)0$$aDaub, Andreas$$b5
000874872 7001_ $$0P:(DE-HGF)0$$aBüchs, Jochen$$b6$$eCorresponding author
000874872 773__ $$0PERI:(DE-600)2214038-4$$a10.1002/biot.201900088$$gVol. 15, no. 2, p. 1900088 -$$n2$$p1900088 -$$tBiotechnology journal$$v15$$x1860-7314$$y2020
000874872 8564_ $$uhttps://juser.fz-juelich.de/record/874872/files/biot.201900088.pdf$$yOpenAccess
000874872 8564_ $$uhttps://juser.fz-juelich.de/record/874872/files/biot.201900088.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874872 909CO $$ooai:juser.fz-juelich.de:874872$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177930$$aForschungszentrum Jülich$$b1$$kFZJ
000874872 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000874872 9141_ $$y2020
000874872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874872 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874872 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOTECHNOL J : 2017
000874872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874872 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874872 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874872 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874872 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874872 920__ $$lyes
000874872 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000874872 9801_ $$aFullTexts
000874872 980__ $$ajournal
000874872 980__ $$aVDB
000874872 980__ $$aI:(DE-Juel1)IEK-14-20191129
000874872 980__ $$aUNRESTRICTED
000874872 981__ $$aI:(DE-Juel1)IET-4-20191129