000874892 001__ 874892
000874892 005__ 20210130004819.0
000874892 0247_ $$2doi$$a10.1038/s41598-020-62326-y
000874892 0247_ $$2Handle$$a2128/24652
000874892 0247_ $$2pmid$$apmid:32242141
000874892 0247_ $$2WOS$$aWOS:000540497600002
000874892 037__ $$aFZJ-2020-01684
000874892 082__ $$a600
000874892 1001_ $$00000-0003-4411-7342$$aBonus, Michele$$b0
000874892 245__ $$aEvidence for functional selectivity in TUDC- and norUDCA-induced signal transduction via α5β1 integrin towards choleresis
000874892 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000874892 3367_ $$2DRIVER$$aarticle
000874892 3367_ $$2DataCite$$aOutput Types/Journal article
000874892 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586173401_17267
000874892 3367_ $$2BibTeX$$aARTICLE
000874892 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874892 3367_ $$00$$2EndNote$$aJournal Article
000874892 520__ $$aFunctional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor and has been described for G protein-coupled receptors. However, it has not yet been described for ligands interacting with integrins without αI domain. Here, we show by molecular dynamics simulations that four side chain-modified derivatives of tauroursodeoxycholic acid (TUDC), an agonist of α5β1 integrin, differentially shift the conformational equilibrium of α5β1 integrin towards the active state, in line with the extent of β1 integrin activation from immunostaining. Unlike TUDC, 24-nor-ursodeoxycholic acid (norUDCA)-induced β1 integrin activation triggered only transient activation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase and, consequently, only transient insertion of the bile acid transporter Bsep into the canalicular membrane, and did not involve activation of epidermal growth factor receptor. These results provide evidence that TUDC and norUDCA exert a functional selectivity at α5β1 integrin and may provide a rationale for differential therapeutic use of UDCA and norUDCA.
000874892 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000874892 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000874892 588__ $$aDataset connected to CrossRef
000874892 7001_ $$0P:(DE-HGF)0$$aSommerfeld, Annika$$b1
000874892 7001_ $$0P:(DE-HGF)0$$aQvartskhava, Natalia$$b2
000874892 7001_ $$0P:(DE-HGF)0$$aGörg, Boris$$b3
000874892 7001_ $$00000-0002-9420-931X$$aLudwig, Beatrice Stefanie$$b4
000874892 7001_ $$00000-0002-7292-9789$$aKessler, Horst$$b5
000874892 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b6$$eCorresponding author
000874892 7001_ $$0P:(DE-HGF)0$$aHäussinger, Dieter$$b7$$eCorresponding author
000874892 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-62326-y$$gVol. 10, no. 1, p. 5795$$n1$$p5795$$tScientific reports$$v10$$x2045-2322$$y2020
000874892 8564_ $$uhttps://juser.fz-juelich.de/record/874892/files/s41598-020-62326-y.pdf$$yOpenAccess
000874892 8564_ $$uhttps://juser.fz-juelich.de/record/874892/files/s41598-020-62326-y.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874892 909CO $$ooai:juser.fz-juelich.de:874892$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b6$$kFZJ
000874892 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000874892 9141_ $$y2020
000874892 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874892 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874892 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874892 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874892 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000874892 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000874892 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874892 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874892 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874892 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874892 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874892 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874892 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874892 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874892 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874892 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874892 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874892 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874892 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874892 920__ $$lyes
000874892 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000874892 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000874892 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000874892 980__ $$ajournal
000874892 980__ $$aVDB
000874892 980__ $$aUNRESTRICTED
000874892 980__ $$aI:(DE-Juel1)NIC-20090406
000874892 980__ $$aI:(DE-Juel1)JSC-20090406
000874892 980__ $$aI:(DE-Juel1)IBI-7-20200312
000874892 9801_ $$aFullTexts