000874893 001__ 874893
000874893 005__ 20210130004819.0
000874893 0247_ $$2doi$$a10.1002/cbic.202000116
000874893 0247_ $$2ISSN$$a1439-4227
000874893 0247_ $$2ISSN$$a1439-7633
000874893 0247_ $$2Handle$$a2128/25614
000874893 0247_ $$2altmetric$$aaltmetric:81336735
000874893 0247_ $$2pmid$$apmid:32227403
000874893 0247_ $$2WOS$$aWOS:000530432400001
000874893 037__ $$aFZJ-2020-01685
000874893 082__ $$a540
000874893 1001_ $$0P:(DE-HGF)0$$aLelle, Marco$$b0
000874893 245__ $$aFluorophore-labeled cyclic nucleotides as potent agonists of cyclic nucleotide-regulated ion channels
000874893 260__ $$aWeinheim$$bWiley-VCH$$c2020
000874893 3367_ $$2DRIVER$$aarticle
000874893 3367_ $$2DataCite$$aOutput Types/Journal article
000874893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599635733_20284
000874893 3367_ $$2BibTeX$$aARTICLE
000874893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874893 3367_ $$00$$2EndNote$$aJournal Article
000874893 520__ $$aHigh‐affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools to investigate their natural targets. Cyclic nucleotide‐regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging and there is a request for fluorescent probes that enable a breaking down to the single molecule level. This inspired us to prepare fluorophore‐labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. The preparation of these bioconjugates was accomplished via a novel cross‐linking strategy that involves the substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide‐regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation‐π interactions between the ligand and the protein. Moreover, the introduced substances bear the potential to investigate related target proteins, such as cAMP‐ and cGMP‐dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases.
000874893 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000874893 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000874893 588__ $$aDataset connected to CrossRef
000874893 7001_ $$0P:(DE-HGF)0$$aOtte, Maik$$b1
000874893 7001_ $$0P:(DE-HGF)0$$aBonus, Michele$$b2
000874893 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b3$$ufzj
000874893 7001_ $$0P:(DE-HGF)0$$aBenndorf, Klaus$$b4$$eCorresponding author
000874893 773__ $$0PERI:(DE-600)2020469-3$$a10.1002/cbic.202000116$$n16$$p2311-2320$$tChemBioChem$$v21$$x1439-4227$$y2020
000874893 8564_ $$uhttps://juser.fz-juelich.de/record/874893/files/cbic.202000116.pdf$$yOpenAccess
000874893 8564_ $$uhttps://juser.fz-juelich.de/record/874893/files/ms.pdf$$yOpenAccess
000874893 8564_ $$uhttps://juser.fz-juelich.de/record/874893/files/ms.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874893 8564_ $$uhttps://juser.fz-juelich.de/record/874893/files/cbic.202000116.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874893 909CO $$ooai:juser.fz-juelich.de:874893$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b3$$kFZJ
000874893 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000874893 9141_ $$y2020
000874893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874893 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874893 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMBIOCHEM : 2017
000874893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874893 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874893 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874893 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874893 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874893 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874893 920__ $$lyes
000874893 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000874893 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000874893 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000874893 980__ $$ajournal
000874893 980__ $$aVDB
000874893 980__ $$aUNRESTRICTED
000874893 980__ $$aI:(DE-Juel1)NIC-20090406
000874893 980__ $$aI:(DE-Juel1)JSC-20090406
000874893 980__ $$aI:(DE-Juel1)IBI-7-20200312
000874893 9801_ $$aFullTexts