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Fig. 1: Neutron backscattering spectra of

an organic ionic crystal (2:1 picric acid

and tetramethylpyrazine) [1], measured on

SPHERES. The inelastic features are due

to methyl group rotation. With increas-

ing temperature, they soften and broaden

and finally merge into a quasielastic cen-

tral peak, due to the crossover from tunnel-

ing to thermally activated jumps. The dark

area marks the resolution function, mea-

sured using an elastic standard scatterer.

1 Introduction

Quasielastic neutron scattering (QENS) is inelastic scattering, measured with fine energy reso-

lution, and used for the study of motions that are much slower than typical vibration modes. In

this chapter, we will discuss different kinds of slow motion. But first, we should explicate the

term quasielastic.

The term quasielastic scattering comes from nuclear physics; it designates the limiting case of

inelastic scattering, close to elastic scattering, where the energy transfer is much smaller than

the incident energy of the scattered particles.1

The term quasielastic peak (or line) designates a spectral distribution that is centered around

~ω ≃ 0. It can be seen as a broadened elastic peak, in the same way as a Gaussian or a

Lorentzian can be seen as a broadened delta function.

These three criteria (slow motion, small energy transfer, broadened elastic peak) are fuzzy, and

only weakly correlated. In practice, whatever can be subsumed under one of them may be

designated as QENS. Any stricter terminology would collide with the manyfold borderline and

crossover cases of which examples are given in Figs. 1 and 2. In both examples, a meaningful

analysis of the quasielastic high-temperature peaks is only possible if their relation to some

inelastic low-temperature modes is taken into consideration.

Fig. 1 shows backscattering spectra of an organic crystals. With an energy window |~ω| <
7 µeV and a fixed final neutron energy Ef = 2.08 meV, this is clearly quasielastic scattering

in the sense |~ω| ≪ Ef. All scattering intensity beyond the resolution-broadened elastic line is

due to methyl group rotation. At low temperature, there are two pairs of inelastic lines. With

increasing temperature, they soften, broaden, and merge into one quasielastic peak, revealing

the crossover from quantum tunneling to thermally activated jumps (Sects. 4.3–4.4).

Fig. 2 shows time-of-flight spectra of an ionic solution in the glassy and liquid state. The energy

1 In light scattering, the terminology is particularly confused. The light scattering analogue of quasielastic neu-

tron scattering employs a grating spectrometer or a Fabry-Perot interferometer to analyse the energy of scattered

photons; these techniques are commonly called high-resolution inelastic light scattering or Rayleigh-Brillouin

scattering. In contrast, in quasielastic light scattering, also called dynamic light scattering or (much more to the

point) photon correlation spectroscopy, scattered photons are counted regardless of their energy; photon counts

are then correlated by some real-time circuitry.
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Fig. 2: Neutron time-of-flight spectra of

a LiCl:H2O solution [2], measured on

TOFTOF. They dark gray area on the right

is kinematically inaccessible. In the light

gray stripe with ~ω . Ei, data analysis is

not possible because scattered neutrons are

so slow that they are overtaken by the next

pulse (frame overlap). The broad maxi-

mum around 5 meV is typical for glasses

(boson peak); in the liquid state (at 300 K),

there is a broad quasielastic peak.

window extends to a multiple of the incident neutron energy Ei = 2.3 meV. This is clearly not

quasielastic in the sense |~ω| ≪ Ef. However, at 300 K there is a quasielastic peak: centered

around ~ω ≃ 0, and substantially broader than the resolution (measured using the same sample

at 5 K). It is due to structural relaxation (Sect. 4.6), and with decreasing temperature becomes

so narrow that it is no longer resolved by TOFTOF, leaving only an inelastic phonon spectrum.

Also in the following, all examples will come from time-of-flight or backscattering spectro-

meters. The spin-echo method, which is special in several respects (implicit Fourier transform,

preference for coherent scattering and small Q), shall be left to another chapter (D6).

Much, but not all of the following, is covered in depth in the monographies [3–5]. I have not

yet seen the forthcoming book [6].

2 Measuring the double differential cross section

When textbooks say that inelastic neutron scattering measures the double differential cross sec-

tion ∂2σ/∂Ω/∂ω, then this is a typical pedagogical simplification. Experimentalists need to

understand the dependence of recorded neutron counts on the sample properties in more detail

so that they can assess possible distortions and apply appropriate corrections. Here we briefly

present the two biggest concerns, multiple scattering and instrumental resolution.

2.1 Attenuation and multiple scattering

Scattering from a small sample is described by the double-differential cross section, which gives

the number of neutrons per time and per incident flux that are scattered into a solid angle dΩ
and a frequency interval dω. In real samples, however, some neutrons are scattered more than

once. In single crystals, coherent multiple scattering of waves leads to a variety of effects (D3)

that are studied by dynamical diffraction theory. In powders and in disordered systems, and also

in inelastic scattering from single crystals, these interference effects play no role because the

coherence length of scattered radiation is much smaller than the mean free path. Therefore we

shall discuss multiple scattering in terms not of wave functions, but of particle currents.

This is the domain of transport theory. The neutron distribution in phase space, f(r,k, t), obeys
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a Boltzmann equation. We request a solution in form of a multiple-scattering expansion f =
∑

j=0 fj , where fj is the distribution of neutrons that have been scattered j times. The stationary

Boltzmann equation, brought into recursive form, is solved by [7, 8]

f0(r,k) = f0(r− Lr,k̂k̂,k) e−Σ(k)L
r,k̂ ,

fj(r,k) =

∫

d3k′ Γ(k′,k)

∫ L
r,k̂

0

dξ e−Σ(k)ξ fj−1(r− ξk̂,k′),
(1)

where j ≥ 1, r is inside the sample, Lr,k̂ is the distance from r in direction k̂ to the sample

surface, Σ = Σa + Σs is the probability per unit length for loss by absorption or scattering,

and Γ(k′,k)d3k is the probability per unit length for scattering from wavevector k′ towards an

element d3k around k, given by the transference function

Γ(k′,k) =
~

m

k′

k2
1

V

∂2σ

∂Ω∂ω
, (2)

where V is the volume associated with the double differential cross section.

The single-scattering intensity, given by f1, is proportional to ∂2σ/∂Ω∂ω. It differs from the

thin-sample limit by exponential attenuation factors. For a simple sample geometry and a ho-

mogenous incident beam, the ξ integral in (1) can be carried out analytically to yield a single

attenuation factor A(Σ(kin),Σ(kout)). The multiple-scattering terms for j ≥ 2 contain self-

convolutions of the transference function and increasingly complicated attenuation factors.

In inelastic scattering, as long as one is only interested in the central frequency, width, and ap-

proximate intensity of excitation lines, attenuation and multiple scattering are of little concern.

Multiple scattering by dispersionless excitations would generate peaks at overtone and combi-

nation frequencies, but in practice the excitation frequency does depend on Q. Since multiple

scattering involves a convolution in Q, it averages over peaks at different frequencies, and re-

sults in a smooth background against which the single-scattering peaks stand out. In contrast,

when it comes to the width, intensity, and lineshape of quasielastic peaks, then multiple scat-

tering can cause severe distortions and spurious results [9], and therefore ought to be examined

more often than in current QENS practice.

Inverting the dependence of f on the double differential cross section is an ill-posed problem.

At best, multiple scattering is treated as a small correction, estimated from sample-specific

models. With or without such correction effort, the first and most important measure is using

thin samples that keep as weak as reasonably possible. Thinner samples require of course longer

measuring times, and result in a smaller signal-to-noise ratio. The typical compromise sample

scatters about 5 to 10 % of the incident neutrons. For hydrogen-rich materials, this means a

sub-mm thickness, which makes powder samples difficult to prepare.

2.2 Instrumental resolution

Every spectrometer has a finite resolution. A resolution function is the conditional probability

R(ω|ω′) that a scattering event with energy transfer ω′ is registered in the channel ω. Accord-

ingly, a true, ‘theoretical’ spectrum Sth(ω′) gives rise to an observed, ‘experimental’ spectrum

Sex(ω) =

∫

dω′R(ω|ω′)Sth(ω′). (3)
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Fig. 3: Spectra of hydration water in

deuterated c-phycocyanin protein powder,

measured on the backscattering spectro-

meter SPHERES of JCNS [10]. Solid

lines are fit with a Kohlrausch-Williams-

Watts function (β = 0.5, see Eq. (40) be-

low), numerically convolved with the reso-

lution measured at 100 K. As in many other

QENS experiments, quasielastic scattering

first appears deep in the wings of the reso-

lution function, whereas no broadening can

be seen at half maximum.

To make R tractable, one usually assumes R(ω|ω′) ≃ R(ω − ω′), which makes of (3) a convo-

lution integral, Sex ≃ R⊗Sth, and allows for an experimental determination ofR by measuring

the spectrum of an elastic scatterer.2

The resolution functions of time-of-flight and backscattering spectrometers are in a very first

approximation Gaussian. Typical scattering functions (Lorentz or Kohlrausch-Williams-Watts

functions, see below) are qualitatively different in shape; when scaled for equal maximum and

equal width at half maximum, they have much broader wings than a Gaussian. In consequence,

the onset of quasielastic scattering is typically detected as additional scattering deep in the wings

of the resolution function before any broadening is observed in the width at half maximum

(Fig. 3). For this reason, in high-resolution neutron scattering the signal-to-noise ratio is a more

important figure of merit than the nominal resolution width.

In principle, resolution effects can be removed from experimental data by Fourier deconvolu-

tion:

Ith(t) = Iex(t)/R̃(t). (4)

The number of independent t points is limited by the Nyquist sampling theorem. For most

of these t, (4) results in the division of two small, noisy numbers. Therefore one must intro-

duce a cut-off time, restricting Ith to a relatively small number of short-time data points. This

loss of information is normally not acceptable; instead of deconvoluting experimental data, it is

preferable to fit the measured data Sex with a theoretical function Sth that has been numerically

convolved with the measured resolution R (or a smoothened model thereof). However, explicit

2 Sth
= δ implies Sex

= R. Phonon scattering can be tolerated since it mainly involves energies far outside

the resolution peak. Usually, the resolution measurement is done either with vanadium (a perfectly incoherent

scatterer so that it can also be used for detector calibration) or with the sample at low temperature (which minimizes

variations of sample geometry and environment, and also can be used for intensity normalization).
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Fig. 4: Intermediate scattering function of

the glass-forming liquid ortho-terphenyl,

measured on three different spectrometers

of the ILL, and combined after Fourier de-

convolution [11]. Solid lines are fits with a

mode-coupling scaling function.

Fourier deconvolution is attractive for combining spectral measurements from different spec-

trometers (Fig. 4) or for comparing neutron scattering with molecular dynamics simulations.

3 Interpreting the scattering function

Neutron spectra are usually analysed and presented in form of the scattering function S(Q,ω),
and so for good reasons: S(Q,ω) depends neither on cross sections nor on the neutron wave-

length or any other details of the scattering experiment; it just contains the sample physics the

scattering experiment is meant to reveal. Microscopic expressions for S(Q,ω) or its Fourier

transforms I(Q, t) and G(r, t) provide the link from the scattering experiment to microscopic

theory or to atomistic simulations or to other information obtained from experiments. This

section introduces some basic concepts that are helpful for the interpretation of S(Q,ω).

3.1 Rebinning from angle to scattering wavenumber

Backscattering or time-of-flight spectrometers have detectors at fixed scattering angles. This

facilitates the conversion of raw neutron counts into the double differential cross section, which

is a function of 2θ and ω.

For further conversion into the scattering function S(Q,ω), one needs to replace the dependence

on 2θ by one on Q. This is trivial for backscattering where ~|ω| ≪ Ei ensures Q ≃ 2ki sin θ.

But in general, Q is a function of 2θ and ω (Fig. 5). Therefore, the experimental data need to

be rebinned. Furthermore, for any given Q, only a restricted ω range is accessible. To avoid

these difficulties, some experiments are interpreted in terms of S(2θ, ω). . . and in some papers,

spectra are incorrectly labelled S(Q,ω) although they clearly belong to constant θ.

3.2 The scattering function as an idealization

In first Born approximation, the double differential cross section is given by

∂2σ

∂Ω∂ω
=
kout

kin

∫

dt

2π
eiωt

1

N

N
∑

j

N
∑

l

〈

bje
iQRj(0)ble

−iQRl(t)
〉

, (5)
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Fig. 5: Dynamic range of a multi-detector

time-of-flight spectrometer: At given de-

tector angle 2θ, the scattering wavenum-

ber Q is a function of the energy transfer

~ω.

where the scattering lengths bj , dependent on nuclear spins, and the nuclear positions Rj are

operators, and 〈. . .〉 is a quantum-statistical average. Except for nuclear magnetism, spins and

positions are uncorrelated so that 〈bjbl〉 can be averaged independently from the positional func-

tion
〈

eiQRj(0)e−iQRl(t)
〉

. At this point, to evaluate the averages, one must distinguish whether

or not j equals l. This motivates the distinction of incoherent and coherent scattering.

In textbook-like oversimplification, one would write

∂2σ

∂Ω∂ω
=
kout

kin

4π

N
{σincSinc(Q, ω) + σcohScoh(Q, ω)} , (6)

with σinc = 〈b2〉−〈b〉2 and σcoh = 〈b〉2, and with scattering functions Sinc, Scoh that only depend

on position operators. However, most samples contain more than one chemical element, and

atoms belonging to different elements move differently. This can be formalized in two different

ways: Either one extends (6) by summing over different element-specific scattering functions,

or one keeps (6) intact and redefines Sinc and Scoh as scattering-length weighted functions. The

latter choice is prevalent.

Often, one chemical element dominates the scattering cross section so that all other contribu-

tions can be neglected in the interpretation of the scattering-length weighted scattering function.

This is especially true for samples that contain hydrogen: The incoherent cross section of the

isotope 1H is so big that all other elements can be neglected, and the scattering can be entirely

attributed to the self-correlation of the hydrogen nuclei. This is the case for most examples in

the present chapter.

Two more simplifications facilitate the interpretation of the scattering function: Most QENS

experiments address either disordered materials or ordered matter in powder form. In both cases

one can take the powder average, so that only a scalar Q dependence is left in the scattering

function S(Q,ω). And the detailed balance correction

S̃(Q,ω) := e~ω/2kBTS(Q,ω) (7)

compensates for the different probabilities of up- and downscattering. In the following, we take

(7) for granted, and omit the tilde from S.
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Fig. 6: Hand-drawn S(Q,ω) and I(Q, t)
for some schematic models: (a) An elas-

tic delta line and an inelastic mode distri-

bution. (b) At higher temperatures (red),

there is an additional quasileastic compo-

nent. (c) Here, the central peak of the red

spectrum is entirely quasielastic; it has no

delta component.

3.3 Frozen, localized, and diffusive dynamics

For brevity, let us specialize to incoherent scattering and drop the subscript ‘inc’. For the qual-

itative physical interpretation of QENS spectra, it is of central importance to switch forth and

back between the scattering function

S(Q, ω) =
1

2π

∫

dt e−iωt I(Q, t), (8)

and its Fourier transform in time, the intermediate scattering function

I(Q, t) =
1

N

∑

j

〈

e−iQr̂j(0)eiQr̂j(t)
〉

, (9)

which captures self correlations of tagged particles.

By construction, I has the initial value I(Q, 0) = 1, from which we obtain the sum rule

∫ +∞

−∞

dω S(Q,ω) = 1. (10)

No such rule holds for S(2θ, ω) or for ∂2σ/∂Ω/∂ω. Also note that experiments only cover

restricted ω ranges (Fig. 5). Therefore, integration of experimental scattering functions will

usually yield less than 1, except in absence inelastic scattering. This is the rationale for the

normalization of experimental spectra to a low-temperature measurement.

Fig. 6 shows Fourier transform pairs S(Q,ω), I(Q, t) for three idealized situations. In (a), there

is a phonon spectrum but no quasielastic scattering. Accordingly, the central peak at ω = 0 is a
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delta line. The Fourier transform of a delta function is a constant. Therefore I(Q, t) decays from

its initial value 1 towards a long-time limit fQ > 0. This fQ is just the amplitude of the delta

component of S(Q,ω), and is called the Debye-Waller factor, or, specifically for incoherent

scattering, the Lamb-Mössbauer factor.

In (b), there is some quasielastic scattering, but on top of it there still an elastic delta line of

amplitude fQAQ. In the Fourier transform, scattering at small |ω| corresponds to relaxation on

long time scales, therefore I(Q, t) decays in two steps that can be more or less pronounced.

Since correlations remain finite, the second step is ascribed to localized motion. The factor AQ

is called the elastic incoherent structure factor (EISF).

In (c), the entire central peak is quasielastic; there is no delta component. Accordingly, I(Q, t)
decays to 0. This implies long-ranged diffusive motion.

To summarize these three cases, we write the scattering function as

S(Q,ω) = fQSslow(Q,ω) + (1− fQ)Sfast(Q,ω). (11)

The fast component is typically the phonon spectrum; it lies almost entirely outside the dynamic

range of a backscattering spectrometer. The slow component

Sslow(Q,ω) = AQδ(ω) + SQENS(Q,ω) (12)

consists of the elastic delta line, with amplitude given by the EISF, and of a quasielastic spec-

trum. In case (a), AQ = 1 and SQENS = 0; in case (c), AQ = 0. So only in case (b) all three

components are present.

4 Sample physics models

For certain types of samples, there exist idealized models that can be solved analytically, yield-

ing closed expressions for the scattering function. These models include harmonic vibrations,

intramolecular rotation, diffusion, and structural relaxation, briefly described in the following

subsections. Even where these models do not apply literally they provide an indispensable

reference for discussing crossover scenarios, correction terms, or refined models.

4.1 Harmonic vibrations and the mean squared displacement

For harmonic vibrations, Sfast and fQ can be derived in closed form. While the phonon spectrum

is out of scope here, the result for fQ is of the outmost importance for the analysis of QENS

data. Vibrations are described in terms of displacements uj(t) from equilibrium positions Rj ,

rj(t) = Rj + uj(t). (13)

If there are only harmonic forces, then the Bloch theorem [13] reduces (9) to

I(Q, t) =
1

N

∑

j

e−2Wj(Q,0)e2Wj(Q,t) (14)
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Fig. 7: Temperature dependence of the

mean squared displacement in glycerol

C3H5(OD)3, obtained from elastic thermal

neutron backscattering [12]. The black line

is a fit with the Debye model. The red line

is the linear high-temperature asymptote of

that model. Deviations from the fit above

the glass transition (Tg = 185 K) are due

to quasielastic broadening.

with

2Wj(Q, t) := 〈 (Quj(0))(Quj(t)) 〉 . (15)

In isotropic systems, an orientational average gives

2Wj(Q, t) =
Q2

3
〈uj(0)uj(t) 〉 . (16)

Each particle partakes in a huge number of oscillatory modes, which quickly run out of phase.

Therefore, within little more than one typical phonon period, 2Wj(Q, t) approaches 0.

Assuming that there is just one kind of scatterers,

fQ ≡ I(Q, t→ ∞) = e−Q2〈u2〉/3. (17)

So the Lamb-Mössbauer factor reveals the mean squared displacement (MSD).3 Experimen-

tally, one may obtain the MSD from the slope of − ln fQ versus Q2. However, one must expect

serious distortions from multiple scattering [9, 15].

Harmonic theory provides a closed expression for the MSD in terms of the vibrational density

of states g(ω),
〈

u2x
〉

=
~

6m

∫

dω
g(ω)

ω
coth

~ω

2kBT
. (18)

Specially for the Debye model, one finds that the MSD as function of temperature crosses over

from a constant plateau, due to zero-point oscillations, to linear growth. At even higher tem-

peratures, deviations from the linearity 〈x2〉 ∝ T may then reveal anharmonicity or quasielastic

broadening (Fig. 7).

4.2 Two-site jumps

Probably the simplest model of anharmonic localized motion consists of a proton that jumps

between two positions r1 and r2. In practice, this motion may combine with confined diffusion

so that one should rather talk of jumps between two cages. Fig. 8 shows that this actually

3 There is widespread confusion in notation and about factors 2 and 3 [14]: If one refers to just one Cartesian

component x ≡ ux of the displacement, then one may write
〈

x2
〉

=
〈

u
2
〉

/3. And the relative displacement of

two independent scatterers is
〈

r
2
〉

= 2
〈

u
2
〉

.
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Fig. 8: Scatter plots of time-sampled po-

sition of three different hydrogen atoms in

Green Fluorescent Protein, from a molecu-

lar dynamics simulation. Reproduced with

kind permission from [16].

happens for some hydrogen atoms in a protein, while other H atoms are confined to one cage,

or partake in methyl group rotation, to be discussed in the next subsection.

The probability p(r, t) of finding the proton at time t at site r obeys the rate equation

d

dt

(

p(r1, t)

p(r2, t)

)

= −
(

λ1 −λ2
−λ1 λ2

)(

p(r1, t)

p(r2, t)

)

(19)

with transition rates λn. The matrix has the eigenvalues 0 and Γ := λ1 + λ2. The rate equation

is solved by p(rn, t) = an + bn exp(−Γt). In the limit t → ∞, the occupation ratio must be

p1/p2 = λ2/λ1 to satisfy dp/dt = 0. Combined with the normalization condition
∑

n p(rn, t) =
1, we find

a1 = p(r1,∞) = λ2/Γ, a2 = p(r2,∞) = λ1/Γ. (20)

Making the probabilities conditional upon the initial condition p(r1, 0) = 1, we compute

p(r1, t|r1, 0) = a1 + a2 exp(−Γt),

p(r2, t|r1, 0) = a2 (1− exp(−Γt)) ,
(21)

and similarly for p(r2, 0) = 1. Using the equilibrium occupation probabilities (20) we obtain

the intermediate self correlation function

I(Q, t) = 〈eiQr(t)e−iQr(0)〉

= p(r1,∞)
[

p(r1, t|r1, 0) + p(r2, t|r1, 0)eiQd
]

+

p(r2,∞)
[

p(r2, t|r1, 0) + p(r1, t|r1, 0)e−iQd
]

(22)

with the jump vector d := r2 − r1. Regrouping terms, abbreviating

A0(Q) := a21 + a22 + 2a1a2 cosQd,

A1(Q) := 2a1a2(1− cosQd),
(23)

and evaluating the Fourier transform of exp(−Γt), we get the incoherent scattering function

S(Q, ω) = A0(Q)δ(ω) + A1(Q)L(ω; Γ), (24)

which consists of an elastic line and a quasielastic component. The latter is Lorentzian,

L(ω; Γ) := 1

π

Γ

Γ2 + ω2
. (25)

As discussed above, the presence of an elastic line is characteristic for localized motion: Since

the jumping proton is confined to a finite region in space, its self correlation function never

decays to zero.
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For powder samples, we average over the orientations of d,

cosQd =
1

4π

∫ π

0

dϑ 2π sinϑ cos(Qd cosϑ) =
sinQd

Qd
= j0(Qd) (26)

with the spherical Bessel function j0. In the simplest case, for jumps between two equivalent

positions, we have λ1 = λ2 and a1 = a2 = 1/2, so that

A0(Q) = (1 + j0(Qd))/2,

A1(Q) = (1− j0(Qd))/2.
(27)

4.3 Rotational jump diffusion

Rotation of molecules or molecular sidegroups is a strong and often dominant source of quasi-

elastic scattering. As the simplest and most important example, we consider the rotation of

a methyl group. In polymers and proteins, this degree of freedom has important effects upon

structure and mechanical properties.

We consider the group R–CH3 as stiff (CH bond length d = 1.097 ± 0.004 Å, HCH angle

θ = 106.5 ± 1.5◦). The only degree of freedom is the rotation around the R–C bond. The

moment of inertia is

I =
∑

md2
⊥
= 2md2(1− cos θ). (28)

The rotational motion can be described by a wave function ψ that depends on one single coor-

dinate, the rotation angle φ. The Schrödinger equation is

{

B
∂2

∂φ2
− V (φ) + E

}

ψ(φ) = 0 (29)

with the rotational constant

B :=
~
2

2I
= 670 µeV. (30)

For free rotation (V = 0), solutions that possess the requested periodicity are sine and cosine

functions of argument Jφ, with integer J . Accordingly, the energy levels are E = BJ2.

In condensed matter, however, the potential V caused by the local environment cannot be ne-

glected. Due to the symmetry of the CH3 group, the Fourier expansion of V (φ) contains only

sine and cosine functions with argument 3mφ, with integer m. In most applications, it is suffi-

cient to retain only one term,

V (φ)
.
= V3 cos(3φ). (31)

The strength of the potential can then be expressed by the dimensionless number V3/B. In the

following we specialize to the case of a strong potential, V3/B ≫ 10, which is by far the most

frequent one.

In a strong potential of form (31), the CH3 group has three preferential orientations (Fig. 8c),

separated by potential walls. The motion of the CH3 group consists mainly of small excursions

from the preferred orientations, called libration. Quantum-mechanically, they are zero-point

oscillations in an approximately harmonic potential. Occasionally though, there are thermally
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Fig. 9: Backscattering spectra of

(CH3NH3)5Bi2Br, measured on

SPHERES [17]. The five methylam-

monium cations fall into two different

categories: at room temperature, two of

them are ordered, three are disordered [18].

Therefore, we fitted the spectra with two

Lorentzians with an amplitude ratio of

2:3. The resulting relaxation times have an

Arrhenius temperature dependence, shown

in the inset.

activated jumps between the three cages. Modelling this jump diffusion requires only a little ex-

tension of the two-site jump model introduced above. The transition matrix in the rate equation

takes the form




2λ −λ −λ
−λ 2λ −λ
−λ −λ 2λ



 , (32)

which has the eigenvalues 0, 3λ, 3λ. Thanks to the degeneracy of the nonzero eigenvalue, the

scattering law retains the simple form (24), with Γ = 3λ, and with amplitudes

A0(Q) = (1 + 2j0(Qr
√
3))/3,

A1(Q) = (2− 2j0(Qd
√
3))/3,

(33)

where r is the radius of the circle on which the rest positions are located. This model has proven

successful in a huge number of experiments; Fig. 9 shows an arbitrarily chosen recent example.

If the rotational potential has aC2 symmetry, then there are six equivalent equilibrium positions,

connected by 60◦ jumps, so that the transition matrix is of rank 6. After some computation it is

found to have three different non-zero eigenvalues Γµ. In such a situation, the inelastic part of

scattering law no longer factorises into a Q dependent and a ω dependent function. Instead, one

has a sum of Lorentzians of different widths:

S(Q, ω) = A0(Q)δ(ω) +
∑

µ

Aµ(Q)L(ω; Γµ). (34)

This equation holds quite generally for systems described by a rate equation of the form (19)

with an arbitrary, symmetric transition matrix. In particular, it holds for rotational jump diffu-

sion of molecules that have more than one axis of rotation [4].

4.4 Rotational tunneling

At low temperatures, almost exclusively the vibrational ground state is occupied. Yet reorien-

tational motion beyond librations is possible by means of quantum mechanical tunneling: The

wave functions of the three localised pocket states ψm (m = 1, 2, 3) have nonzero overlap.

Therefore, the eigenstates are a linear combination of pocket states.4 Periodicity and threefold

4 This is an extremely simplified outline of the theory. In a serious treatment, to get all symmetry requirements

right, one must also take into account the nuclear spins of the H atoms [3].
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Fig. 10: Atomic dynamics of liquid Zr-Ni, investigated with the time-of-flight spectrometer

TOFTOF [19]. (a) Selected spectra with Lorentzian fits (39). The dashed Gaussian with

a FWHM of 95 µeV approximates the instrumental resolution. (b) Linewidths ΓQ, from

Lorentzian fits to the spectra. For small Q, scattering is dominated by incoherent contributions

from Ni so that the initial slope of ΓQ vs. Q2 yields the self-diffusion coefficient of Ni.

symmetry allow three such combinations: a plain additive one

ψ1 + ψ2 + ψ3, (35)

and two superpositions with phase rotations

ψ1 + e±i2π/3ψ2 + e±i4π/3ψ3. (36)

In the language of group theory, state (35) has symmetry A, the degenerate states (36) are

labelled Ea, Eb. It is found that A is the ground state. The tunneling splitting ~Ωt between

the states A and E is determined by the overlap integral 〈ψm|V |ψn〉 (m 6= n), which depends

exponentially on the height of the potential wall. Experiments that detect tunneling transitions

provide therefore a very sensitive probe of the rotational potential; conversely, if the potential

is not accurately known, it is almost impossible to predict whether a tunneling transition will

show up in a given experimental energy range.

In neutron scattering, a tunneling transition appears as a pair of inelastic peaks at ±~Ωt. The

spectral shape of these peaks is well described by Lorentzians L(ω±Ωt; Γ). With rising temper-

atures, the occupancy of excited vibrational levels increase. This facilitates transitions between

A and E sublevels and results in a decrease of ~Ωt and an increase of the line width Γ. Upon

further temperature increase, thermal motion of neighbouring molecules causes so strong po-

tential fluctuations that the picture of quantum tunneling is no longer applicable. Instead, the

motion between different pocket states must be described as thermally activated jump diffu-

sion, as exposed in the previous subsection. An experimental example has already been given

in Fig. 1.

4.5 Diffusion

The simplest model for self-diffusion is Brownian motion. It can be described as a memory-less

random walk. Particle trajectories r(t) are subject to the Langevin equation. Equivalently, the

diffusion equation is applied to the Van Hove self-correlation function, resulting in the solution

Gs(r, t) = (4πDt)−3/2e−r2/4Dt. (37)
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Fig. 11: Hydrogen dynamics in n-alkanes. (a) Diffusion coefficient D, determined by pulsed-

field gradient NMR and by neutron scattering. The data agree only for the shortest molecule

(n = 8). In longer chains, QENS deviates from NMR because it measures not only center-of-

mass molecular translation, but also rotation and intramolecular motion [20]. (b) In an exem-

plary series of TOFTOF measurements with different instrumental resolutions naive fits result

in a dependence of the apparent diffusion coefficients on the resolution time [21].

By Fourier transform, we find the intermediate scattering function

I(Q, t) = exp(−DQ2t) (38)

and the scattering function

S(Q,ω) = L(ω;DQ2). (39)

On a time-of-flight spectrometer, with experimental scales of the order Q ∼ Å
−1

and ~ω ∼
0.1 . . . 10 meV, one can resolve diffusion coefficients D of the order 10−10 . . . 10−8 m2/s.

As anticipated in Sect. 3.3 and Fig. 6, there is no elastic scattering component, in contrast to the

localized jump models of Sects. 4.2–4.4. In practice, however, there may be some elastic scat-

tering from the sample container.5 And in an important class of applications, one investigates

diffusion in a solid matrix, e. g. hydrogen diffusion in metals [5]. Therefore, absence of elastic

scattering is not a reliable indicator of long-ranged diffusion. The key indicator is rather the

pronounced Q dependence of the Lorentzian width Γ = DQ2, in contrast to the Q-independent

width of the jump models. Conversely, (39) has a fixed amplitude 1, whereas the Lorentzians

of the jump models oscillate with Q.

The straightforward determination of D from Lorentzian fits (39) works best in simple atomic

systems. Recent examples are provided by metallic melts, which can be studied under very

clean experimental conditions using electromagnetic levitation (Fig. 10). Results improve sig-

nificantly upon macroscopic laboratory measurements that suffer from convective contributions.

In molecular liquids the applicability of (39) is not ascertained a priori because the atomic mo-

tion seen by neutron scattering is a superposition of translations, rotations, vibrations and rear-

rangements. This has been demonstrated very clearly in a systematic study of alkanes CnH2n+2

(Fig.11) [20, 21].

5 It is debatable whether container scattering should be subtracted from the raw data, or taken into account as part

of the fit model. Either way of correcting is only approximative because of sample-container multiple scattering.
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4.6 Structural relaxation

Atoms or molecules that constitute a liquid also undergo long-range diffusion. On short time

and length scales, however, their trajectories are not memory-less random walks. Particles

rather rattle in transient cages, occasionally probe a step out of the cage, and more often than

not do the next step in the backward direction. This delays the decay of correlations, and is well

described by Kohlrausch’s stretched exponential function

exp(−(t/τ)β) (40)

that is also known from other experimental probes of structural relaxation [22]. Typical values

of β are between 0.4 and 0.8.

To use (40) in spectral fits, its Fourier transform, the Kohlrausch-Williams-Watts function, must

be computed numerically [23]. Fig. 3 shows an application to the motion of supercooled hydra-

tion water in a protein powder.

Empirical fit functions like (40) do not capture the short-time dynamics of rattling particles.

For this, one needs a microscopic theory, as proposed by the mode-coupling theory of structural

relaxation [24,25]. This theory starts from a closed equation of motion for density correlations,

and leads to scaling functions like those used in the fits of Fig. 4.

I thank Winfried Petry for introducing me to neutron backscattering, Wolfgang Doster for discussions of data

interpretation, Tapan Chatterji, Grazyna Bator, Michael Prager, Tobias Unruh, and many more colleagues, for

joint experiments, Marie-Sousai Appavou, Barbara Daegener, Daria Noferini, Reiner Zorn for corrections on the

manuscript.
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