000874902 001__ 874902
000874902 005__ 20210130004821.0
000874902 0247_ $$2doi$$a10.1002/jmri.27136
000874902 0247_ $$2ISSN$$a1053-1807
000874902 0247_ $$2ISSN$$a1522-2586
000874902 0247_ $$2Handle$$a2128/25765
000874902 0247_ $$2pmid$$apmid:32246803
000874902 0247_ $$2WOS$$aWOS:000523255700001
000874902 037__ $$aFZJ-2020-01690
000874902 082__ $$a610
000874902 1001_ $$00000-0002-3254-4809$$aLennartz, Simon$$b0$$eCorresponding author
000874902 245__ $$aMRI Follow-up of Astrocytoma: Automated Coregistration and Color-Coding of FLAIR Sequences Improves Diagnostic Accuracy With Comparable Reading Time
000874902 260__ $$aNew York, NY$$bWiley-Liss$$c2020
000874902 3367_ $$2DRIVER$$aarticle
000874902 3367_ $$2DataCite$$aOutput Types/Journal article
000874902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601041759_15197
000874902 3367_ $$2BibTeX$$aARTICLE
000874902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874902 3367_ $$00$$2EndNote$$aJournal Article
000874902 520__ $$aBackgroundMRI follow‐up is widely used for longitudinal assessment of astrocytoma, yet reading can be tedious and error‐prone, in particular when changes are subtle.Purpose/HypothesisTo determine the effect of automated, color‐coded coregistration (AC) of fluid attenuated inversion recovery (FLAIR) sequences on diagnostic accuracy, certainty, and reading time compared to conventional follow‐up MRI assessment of astrocytoma patients.Study TypeRetrospective.PopulationIn all, 41 patients with neuropathologically confirmed astrocytoma.Field Strength/Sequence1.0–3.0T/FLAIRAssessmentThe presence or absence of tumor progression was determined based on FLAIR sequences, contrast‐enhanced T1 sequences, and clinical data. Three radiologists assessed 47 MRI study pairs in a conventional reading (CR) and in a second reading supported by AC after 6 weeks. Readers determined the presence/absence of tumor progression and indicated diagnostic certainty on a 5‐point Likert scale. Reading time was recorded by an independent assessor.Statistical TestsThe Wilcoxon test was used to assess reading time and diagnostic certainty. Differences in diagnostic accuracy, sensitivity, and specificity were analyzed with the McNemar mid‐p test.ResultsReaders attained significantly higher overall sensitivity (0.86 vs. 0.75; P < 0.05) and diagnostic accuracy (0.84 vs. 0.73; P < 0.05) for detection of progressive nonenhancing tumor burden when using AC compared to CR. There was a strong trend towards higher specificity within the AC‐augmented reading, yet without statistical significance (0.83 vs. 0.71; P = 0.08). Sensitivity for unequivocal disease progression was similarly high in both approaches (AC: 0.94, CR: 0.92), while for marginal disease progressions, it was significantly higher in AC (AC: 0.78, CR: 0.58; P < 0.05). Reading time including application loading time was comparable (AC: 38.1 ± 16.8 sec, CR: 36.0 ± 18.9 s; P = 0.25).Data ConclusionCompared to CR, AC improves comparison of FLAIR signal hyperintensity at MRI follow‐up of astrocytoma patients, allowing for a significantly higher diagnostic accuracy, particularly for subtle disease progression at a comparable reading time.
000874902 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000874902 588__ $$aDataset connected to CrossRef
000874902 7001_ $$0P:(DE-HGF)0$$aZopfs, David$$b1
000874902 7001_ $$0P:(DE-HGF)0$$aNobis, Anne$$b2
000874902 7001_ $$0P:(DE-HGF)0$$aPaquet, Stefanie$$b3
000874902 7001_ $$0P:(DE-HGF)0$$aHoyer, Ulrike Cornelia Isabel$$b4
000874902 7001_ $$00000-0003-3746-8523$$aZäske, Charlotte$$b5
000874902 7001_ $$0P:(DE-HGF)0$$aGoertz, Lukas$$b6
000874902 7001_ $$0P:(DE-HGF)0$$aKabbasch, Christoph$$b7
000874902 7001_ $$0P:(DE-HGF)0$$aLaukamp, Kai Roman$$b8
000874902 7001_ $$0P:(DE-HGF)0$$aGroße Hokamp, Nils$$b9
000874902 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b10$$ufzj
000874902 7001_ $$0P:(DE-HGF)0$$aBorggrefe, Jan$$b11
000874902 773__ $$0PERI:(DE-600)1497154-9$$a10.1002/jmri.27136$$n4$$p 1197-1206$$tJournal of magnetic resonance imaging$$v52$$x1053-1807$$y2020
000874902 8564_ $$uhttps://juser.fz-juelich.de/record/874902/files/jmri.27136.pdf$$yOpenAccess
000874902 8564_ $$uhttps://juser.fz-juelich.de/record/874902/files/jmri.27136.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874902 909CO $$ooai:juser.fz-juelich.de:874902$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b10$$kFZJ
000874902 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000874902 9141_ $$y2020
000874902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874902 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON IMAGING : 2017
000874902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874902 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874902 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874902 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874902 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874902 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874902 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000874902 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874902 920__ $$lyes
000874902 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000874902 980__ $$ajournal
000874902 980__ $$aVDB
000874902 980__ $$aUNRESTRICTED
000874902 980__ $$aI:(DE-Juel1)INM-3-20090406
000874902 9801_ $$aFullTexts