000874908 001__ 874908
000874908 005__ 20210130004822.0
000874908 0247_ $$2doi$$a10.1002/hbm.24995
000874908 0247_ $$2ISSN$$a1065-9471
000874908 0247_ $$2ISSN$$a1097-0193
000874908 0247_ $$2Handle$$a2128/25302
000874908 0247_ $$2altmetric$$aaltmetric:78868226
000874908 0247_ $$2pmid$$apmid:32239749
000874908 0247_ $$2WOS$$aWOS:000523248600001
000874908 037__ $$aFZJ-2020-01696
000874908 082__ $$a610
000874908 1001_ $$00000-0001-6398-8448$$aMohajer, Bahram$$b0
000874908 245__ $$aGray matter volume and estimated brain age gap are not linked with sleep-disordered breathing
000874908 260__ $$aNew York, NY$$bWiley-Liss$$c2020
000874908 3367_ $$2DRIVER$$aarticle
000874908 3367_ $$2DataCite$$aOutput Types/Journal article
000874908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594994414_32528
000874908 3367_ $$2BibTeX$$aARTICLE
000874908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874908 3367_ $$00$$2EndNote$$aJournal Article
000874908 500__ $$aFunding informationNIH/NIA'a, Grant/Award Numbers:R21AG055002, R01AG056531,R01AG056031; European Union's Horizon2020 Research and Innovation Programme,Grant/Award Number: 7202070; HelmholtzPortfolio Theme; National Institute of MentalHealth; Deutsche Forschungsgemeinschaft;University of Southern California; NorthernCalifornia Institute for Research and Education;Foundation for the National Institutes ofHealth; Canadian Institutes of HealthResearch; Transition Therapeutics; TakedaPharmaceutical Company; Servier; PiramalImaging; Pfizer Inc; Novartis Pharm aceuticalsCorporation; Neurotrack Technologies;NeuroRx Research; Meso Scale Diag nostics,LLC; Merck & Co., Inc; Lundb eck; Lumosity;Johnson & Johnson PharmaceuticalResearch & Development LLC; JanssenAlzheimer Immunotherapy Research &Development, LLC; IXICO Ltd; GE Healthcare;Fujirebio; Genentech, Inc; F. Hoffmann-LaRoche Ltd; EuroImmun; Eli Lilly and Company;Eisai Inc; Cogstate; CereSpir, Inc; Bristol-MyersSquibb Company; Biogen; Araclon Biotech;BioClinica, Inc; Alzheimer's Drug DiscoveryFoundation; AbbVie, Alzheimer's Associatio n;National Institute of Biomedical Imaging andBioengineering; National Institute on Aging;Department of Defense, Grant/AwardNumber: W81XWH-12-20012; NationalInstitutes of Health, Grant/Award Numbers:R01-MH074457, U01 AG024904; ADNI
000874908 520__ $$aAlzheimer's disease (AD) and sleep-disordered breathing (SDB) are prevalent conditions with a rising burden. It is suggested that SDB may contribute to cognitive decline and advanced aging. Here, we assessed the link between self-reported SDB and gray matter volume in patients with AD, mild cognitive impairment (MCI) and healthy controls (HCs). We further investigated whether SDB was associated with advanced brain aging. We included a total of 330 participants, divided based on self-reported history of SDB, and matched across diagnoses for age, sex and presence of the Apolipoprotein E4 allele, from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Gray-matter volume was measured using voxel-wise morphometry and group differences in terms of SDB, cognitive status, and their interaction were assessed. Further, using an age-prediction model fitted on gray-matter data of external datasets, we predicted study participants' age from their structural images. Cognitive decline and advanced age were associated with lower gray matter volume in various regions, particularly in the bilateral temporal lobes. Brains age was well predicted from the morphological data in HCs and, as expected, elevated in MCI and particularly in AD subjects. However, there was neither a significant difference between regional gray matter volume in any diagnostic group related to the SDB status, nor in SDB-by-cognitive status interaction. Moreover, we found no difference in estimated chronological age gap related to SDB, or by-cognitive status interaction. Contrary to our hypothesis, we were not able to find a general or a diagnostic-dependent association of SDB with either gray-matter volumetric or brain aging.
000874908 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000874908 588__ $$aDataset connected to CrossRef
000874908 7001_ $$0P:(DE-HGF)0$$aAbbasi, Nooshin$$b1
000874908 7001_ $$0P:(DE-HGF)0$$aMohammadi, Esmaeil$$b2
000874908 7001_ $$0P:(DE-HGF)0$$aKhazaie, Habibolah$$b3
000874908 7001_ $$0P:(DE-HGF)0$$aOsorio, Ricardo S.$$b4
000874908 7001_ $$0P:(DE-HGF)0$$aRosenzweig, Ivana$$b5
000874908 7001_ $$0P:(DE-Juel1)174483$$aEickhoff, Claudia R.$$b6
000874908 7001_ $$0P:(DE-HGF)0$$aZarei, Mojtaba$$b7
000874908 7001_ $$00000-0003-3999-3807$$aTahmasian, Masoud$$b8$$eCorresponding author
000874908 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b9
000874908 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.24995$$n11$$p3034-3044$$tHuman brain mapping$$v41$$x1065-9471$$y2020
000874908 8564_ $$uhttps://juser.fz-juelich.de/record/874908/files/hbm.24995.pdf$$yOpenAccess
000874908 8564_ $$uhttps://juser.fz-juelich.de/record/874908/files/hbm.24995.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874908 909CO $$ooai:juser.fz-juelich.de:874908$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174483$$aForschungszentrum Jülich$$b6$$kFZJ
000874908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b9$$kFZJ
000874908 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000874908 9141_ $$y2020
000874908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874908 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874908 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2017
000874908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874908 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874908 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874908 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874908 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874908 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874908 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874908 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874908 920__ $$lyes
000874908 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000874908 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000874908 980__ $$ajournal
000874908 980__ $$aVDB
000874908 980__ $$aUNRESTRICTED
000874908 980__ $$aI:(DE-Juel1)INM-7-20090406
000874908 980__ $$aI:(DE-Juel1)INM-1-20090406
000874908 9801_ $$aFullTexts