000874916 001__ 874916
000874916 005__ 20240712112952.0
000874916 0247_ $$2doi$$a10.1088/1402-4896/ab4308
000874916 0247_ $$2ISSN$$a0031-8949
000874916 0247_ $$2ISSN$$a1402-4896
000874916 0247_ $$2Handle$$a2128/24943
000874916 0247_ $$2altmetric$$aaltmetric:76777224
000874916 0247_ $$2WOS$$aWOS:000520000600013
000874916 037__ $$aFZJ-2020-01700
000874916 082__ $$a530
000874916 1001_ $$00000-0002-7472-7830$$aGallo, A.$$b0$$eCorresponding author
000874916 245__ $$aFirst efforts in numerical modeling of tungsten migration in WEST with SolEdge2D-EIRENE and ERO2.0
000874916 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2020
000874916 3367_ $$2DRIVER$$aarticle
000874916 3367_ $$2DataCite$$aOutput Types/Journal article
000874916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591107681_5817
000874916 3367_ $$2BibTeX$$aARTICLE
000874916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874916 3367_ $$00$$2EndNote$$aJournal Article
000874916 520__ $$aThe first simulations of tungsten migration in WEST are performed with the SolEdge2D-EIRENE and ERO2.0 codes to support experimental investigations into the erosion of plasma-facing components and plasma impurity content. The impact of varying the background density on (i) the amount of tungsten penetrating the confined plasma, (ii) the promptly redeposited fraction, and (iii) the erosion and deposition patterns on the wall, is investigated under the working assumptions of a simplified toroidally symmetric wall contour, typical L-mode values of the transport coefficients, and deuterium plasma with a 1% oxygen content. The lower divertor is found to be the main zone of net tungsten erosion and deposition. This pattern is reduced at high background density due to the higher promptly redeposited fraction.
000874916 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000874916 588__ $$aDataset connected to CrossRef
000874916 7001_ $$0P:(DE-Juel1)179398$$aSepetys, A.$$b1
000874916 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b2$$eCorresponding author
000874916 7001_ $$0P:(DE-HGF)0$$aMarandet, Y.$$b3
000874916 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b4
000874916 7001_ $$0P:(DE-HGF)0$$aBufferand, H.$$b5
000874916 7001_ $$0P:(DE-HGF)0$$aCiraolo, G.$$b6
000874916 7001_ $$0P:(DE-HGF)0$$aCorre, Y.$$b7
000874916 7001_ $$0P:(DE-Juel1)169120$$aErtmer, S.$$b8
000874916 7001_ $$0P:(DE-HGF)0$$aFedorczak, N.$$b9
000874916 7001_ $$0P:(DE-HGF)0$$aGunn, J.$$b10
000874916 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b11
000874916 7001_ $$0P:(DE-HGF)0$$aMartin, C.$$b12
000874916 7001_ $$0P:(DE-Juel1)161412$$aMeyer, Carolin$$b13$$ufzj
000874916 7001_ $$00000-0003-4795-3274$$avan Rooij, G. J.$$b14
000874916 7001_ $$0P:(DE-HGF)0$$aRoubin, P.$$b15
000874916 7001_ $$0P:(DE-HGF)0$$aTsitrone, E.$$b16
000874916 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/ab4308$$gVol. T171, p. 014013 -$$p014013 -$$tPhysica scripta$$vT171$$x1402-4896$$y2020
000874916 8564_ $$uhttps://juser.fz-juelich.de/record/874916/files/Gallo_2020_Phys._Scr._2020_014013.pdf$$yRestricted
000874916 8564_ $$uhttps://juser.fz-juelich.de/record/874916/files/postprint_Romazanov.pdf$$yPublished on 2020-02-27. Available in OpenAccess from 2021-02-27.
000874916 8564_ $$uhttps://juser.fz-juelich.de/record/874916/files/Gallo_2020_Phys._Scr._2020_014013.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874916 8564_ $$uhttps://juser.fz-juelich.de/record/874916/files/postprint_Romazanov.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-27. Available in OpenAccess from 2021-02-27.
000874916 909CO $$ooai:juser.fz-juelich.de:874916$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179398$$aForschungszentrum Jülich$$b1$$kFZJ
000874916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b2$$kFZJ
000874916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b4$$kFZJ
000874916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169120$$aForschungszentrum Jülich$$b8$$kFZJ
000874916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b11$$kFZJ
000874916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161412$$aForschungszentrum Jülich$$b13$$kFZJ
000874916 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000874916 9141_ $$y2020
000874916 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874916 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874916 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874916 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874916 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874916 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874916 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000874916 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874916 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874916 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874916 920__ $$lyes
000874916 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000874916 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x1
000874916 9801_ $$aFullTexts
000874916 980__ $$ajournal
000874916 980__ $$aVDB
000874916 980__ $$aUNRESTRICTED
000874916 980__ $$aI:(DE-Juel1)IEK-4-20101013
000874916 980__ $$aI:(DE-Juel1)IEK-11-20140314
000874916 981__ $$aI:(DE-Juel1)IFN-1-20101013
000874916 981__ $$aI:(DE-Juel1)IET-2-20140314
000874916 981__ $$aI:(DE-Juel1)IET-2-20140314