000874924 001__ 874924 000874924 005__ 20210615174827.0 000874924 0247_ $$2doi$$a10.1109/TIP.2020.2982260 000874924 0247_ $$2ISSN$$a1057-7149 000874924 0247_ $$2ISSN$$a1941-0042 000874924 0247_ $$2Handle$$a2128/27837 000874924 0247_ $$2pmid$$a32224458 000874924 0247_ $$2WOS$$aWOS:000561102200004 000874924 037__ $$aFZJ-2020-01708 000874924 041__ $$aEnglish 000874924 082__ $$a620 000874924 1001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b0$$eCorresponding author 000874924 245__ $$aPractically Lossless Affine Image Transformation 000874924 260__ $$aNew York, NY$$bIEEE$$c2020 000874924 3367_ $$2DRIVER$$aarticle 000874924 3367_ $$2DataCite$$aOutput Types/Journal article 000874924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622016118_1383 000874924 3367_ $$2BibTeX$$aARTICLE 000874924 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000874924 3367_ $$00$$2EndNote$$aJournal Article 000874924 520__ $$aIn this contribution we introduce an almost lossless affine 2D image transformation method. To this end we extend the theory of the well-known Chirp-z transform to allow for fully affine transformation of general n-dimensional images. In addition we give a practical spatial and spectral zero-padding approach dramatically reducing losses of our transform, where usual transforms introduce blurring artifacts due to sub-optimal interpolation. The proposed method improves the mean squared error by approx. a factor of 1800 compared to the commonly used linear interpolation, and by a factor of 250 to the best competitor. We derive the transform from basic principles with special attention to implementation details and supplement this paper with python code for 2D images. In demonstration experiments we show the superior image quality compared to usual approaches, when using our method. However runtimes are considerably larger than when using toolbox algorithms. 000874924 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000874924 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1 000874924 588__ $$aDataset connected to CrossRef 000874924 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b1 000874924 773__ $$0PERI:(DE-600)2034319-X$$a10.1109/TIP.2020.2982260$$gVol. 29, p. 5367 - 5373$$p5367 - 5373$$tIEEE transactions on image processing$$v29$$x1941-0042$$y2020 000874924 8564_ $$uhttps://juser.fz-juelich.de/record/874924/files/09048130.pdf$$yRestricted 000874924 8564_ $$uhttps://juser.fz-juelich.de/record/874924/files/Affine_Chirp_Z%281%29.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000874924 8564_ $$uhttps://juser.fz-juelich.de/record/874924/files/09048130.pdf?subformat=pdfa$$xpdfa$$yRestricted 000874924 909CO $$ooai:juser.fz-juelich.de:874924$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000874924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b0$$kFZJ 000874924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b1$$kFZJ 000874924 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000874924 9132_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 000874924 9141_ $$y2020 000874924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000874924 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000874924 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000874924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T IMAGE PROCESS : 2017 000874924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000874924 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000874924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000874924 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000874924 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000874924 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T IMAGE PROCESS : 2017 000874924 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000874924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000874924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000874924 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000874924 980__ $$ajournal 000874924 980__ $$aVDB 000874924 980__ $$aUNRESTRICTED 000874924 980__ $$aI:(DE-Juel1)IBG-2-20101118 000874924 9801_ $$aFullTexts