001     874924
005     20210615174827.0
024 7 _ |a 10.1109/TIP.2020.2982260
|2 doi
024 7 _ |a 1057-7149
|2 ISSN
024 7 _ |a 1941-0042
|2 ISSN
024 7 _ |a 2128/27837
|2 Handle
024 7 _ |a 32224458
|2 pmid
024 7 _ |a WOS:000561102200004
|2 WOS
037 _ _ |a FZJ-2020-01708
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 0
|e Corresponding author
245 _ _ |a Practically Lossless Affine Image Transformation
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622016118_1383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this contribution we introduce an almost lossless affine 2D image transformation method. To this end we extend the theory of the well-known Chirp-z transform to allow for fully affine transformation of general n-dimensional images. In addition we give a practical spatial and spectral zero-padding approach dramatically reducing losses of our transform, where usual transforms introduce blurring artifacts due to sub-optimal interpolation. The proposed method improves the mean squared error by approx. a factor of 1800 compared to the commonly used linear interpolation, and by a factor of 250 to the best competitor. We derive the transform from basic principles with special attention to implementation details and supplement this paper with python code for 2D images. In demonstration experiments we show the superior image quality compared to usual approaches, when using our method. However runtimes are considerably larger than when using toolbox algorithms.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 1
773 _ _ |a 10.1109/TIP.2020.2982260
|g Vol. 29, p. 5367 - 5373
|0 PERI:(DE-600)2034319-X
|p 5367 - 5373
|t IEEE transactions on image processing
|v 29
|y 2020
|x 1941-0042
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/874924/files/09048130.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/874924/files/Affine_Chirp_Z%281%29.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/874924/files/09048130.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874924
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T IMAGE PROCESS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T IMAGE PROCESS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21