001     874925
005     20210130004827.0
037 _ _ |a FZJ-2020-01709
100 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Phenome2020
|c Tucson
|d 2020-02-24 - 2020-02-27
|w USA
245 _ _ |a Genotypic differences in early wheat seedling establishment in natural soil investigated using non-invasive 3D magnetic resonance imaging
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1593601680_10400
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Seed germination and seedling establishment are the first important steps in a plant's growth cycle. We developed a measurement pipeline to quantify the early stages of root development in young seedlings in natural soil. We used non-invasive magnetic resonance imaging (MRI), providing us with 3D information about root structures. By growing up to 18 seedlings per pot (Ø=12.5cm, 10cm height) and by focusing on early growth (up to 4 days after start of germination), a much higher plant throughput compared to traditional 3D root measurement protocols in soil was achieved. Due to the high temporal resolution of the acquired data sets (4 images per day), dynamic traits such as shoot and root emergence time were obtained accurately. We used this 'deep phenotyping' approach, with multiple temporal and spatial layers of data, to investigate genotypic differences using the 8 parent lines of the NIAB MAGIC population. Clear genotypic differences in structural (e.g. root angle, root lengths, and number) and temporal (e.g. time of root emergence, shoot emergence) were quantified. We identified different growth strategies among the parent genotypes by correlating the temporal development of traits. This new MRI method offers a promising tool for high throughput root seedling screening in natural soil environments, along with opportunities to discover new traits based on dynamics of root and shoot development. This work was financially supported by BASF.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
700 1 _ |a Kochs, Johannes
|0 P:(DE-Juel1)129346
|b 1
|u fzj
700 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 2
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 3
|u fzj
700 1 _ |a Mohl, Carola
|0 P:(DE-Juel1)129366
|b 4
|u fzj
700 1 _ |a Faßbender, Heike
|0 P:(DE-Juel1)129397
|b 5
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 6
|u fzj
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 7
|u fzj
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 8
|u fzj
909 C O |o oai:juser.fz-juelich.de:874925
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129366
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129397
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129425
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21