000874952 001__ 874952 000874952 005__ 20240712112952.0 000874952 0247_ $$2arXiv$$aarXiv:1912.06420 000874952 0247_ $$2doi$$a10.1103/PhysRevLett.124.194502 000874952 0247_ $$2Handle$$a2128/25065 000874952 0247_ $$2pmid$$apmid:32469577 000874952 0247_ $$2WOS$$aWOS:000532663000004 000874952 0247_ $$2altmetric$$aaltmetric:72878155 000874952 037__ $$aFZJ-2020-01719 000874952 041__ $$aEnglish 000874952 082__ $$a530 000874952 1001_ $$0P:(DE-HGF)0$$aHack, Michiel A.$$b0$$eCorresponding author 000874952 245__ $$aSelf-Similar Liquid Lens Coalescence 000874952 260__ $$aCollege Park, Md.$$bAPS$$c2020 000874952 3367_ $$2DRIVER$$aarticle 000874952 3367_ $$2DataCite$$aOutput Types/Journal article 000874952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592312794_28448 000874952 3367_ $$2BibTeX$$aARTICLE 000874952 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000874952 3367_ $$00$$2EndNote$$aJournal Article 000874952 520__ $$aA basic feature of liquid drops is that they can merge upon contact to form a larger drop. In spite of its importance to various applications, drop coalescence on pre-wetted substrates has received little attention. Here, we experimentally and theoretically reveal the dynamics of drop coalescence on a thick layer of a low-viscosity liquid. It is shown that these so-called 'liquid lenses' merge by the self-similar vertical growth of a bridge connecting the two lenses. Using a slender analysis, we derive similarity solutions corresponding to the viscous and inertial limits. Excellent agreement is found with the experiments without any adjustable parameters, capturing both the spatial and temporal structure of the flow during coalescence. Finally, we consider the crossover between the two regimes and show that all data of different lens viscosities collapse on a single curve capturing the full range of the coalescence dynamics. 000874952 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0 000874952 536__ $$0G:(GEPRIS)422916531$$aDFG project 422916531 - Adaptive und schaltbare Grenzflächen basierend auf strukturierten Kolloiden $$c422916531$$x1 000874952 588__ $$aDataset connected to arXivarXiv 000874952 7001_ $$0P:(DE-HGF)0$$aTewes, Walter$$b1 000874952 7001_ $$0P:(DE-Juel1)174311$$aXie, Qingguang$$b2 000874952 7001_ $$0P:(DE-HGF)0$$aDatt, Charu$$b3 000874952 7001_ $$0P:(DE-HGF)0$$aHarth, Kirsten$$b4 000874952 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b5 000874952 7001_ $$0P:(DE-HGF)0$$aSnoeijer, Jacco H.$$b6 000874952 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.124.194502$$n19$$p194502 –$$tPhysical review letters$$v124$$x0031-9007$$y2020 000874952 8564_ $$uhttps://juser.fz-juelich.de/record/874952/files/Self-Similar%20Liquid%20Lens%20Coalescence.pdf$$yOpenAccess 000874952 8564_ $$uhttps://juser.fz-juelich.de/record/874952/files/Self-Similar%20Liquid%20Lens%20Coalescence.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000874952 909CO $$ooai:juser.fz-juelich.de:874952$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000874952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11 000874952 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000874952 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000874952 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-01-11 000874952 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger 000874952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11 000874952 9141_ $$y2020 000874952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174311$$aForschungszentrum Jülich$$b2$$kFZJ 000874952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b5$$kFZJ 000874952 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000874952 920__ $$lyes 000874952 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 000874952 9801_ $$aFullTexts 000874952 980__ $$ajournal 000874952 980__ $$aVDB 000874952 980__ $$aUNRESTRICTED 000874952 980__ $$aI:(DE-Juel1)IEK-11-20140314 000874952 981__ $$aI:(DE-Juel1)IET-2-20140314