| 001 | 874952 | ||
| 005 | 20240712112952.0 | ||
| 024 | 7 | _ | |a arXiv:1912.06420 |2 arXiv |
| 024 | 7 | _ | |a 10.1103/PhysRevLett.124.194502 |2 doi |
| 024 | 7 | _ | |a 2128/25065 |2 Handle |
| 024 | 7 | _ | |a pmid:32469577 |2 pmid |
| 024 | 7 | _ | |a WOS:000532663000004 |2 WOS |
| 024 | 7 | _ | |a altmetric:72878155 |2 altmetric |
| 037 | _ | _ | |a FZJ-2020-01719 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Hack, Michiel A. |b 0 |e Corresponding author |
| 245 | _ | _ | |a Self-Similar Liquid Lens Coalescence |
| 260 | _ | _ | |a College Park, Md. |b APS |c 2020 |
| 336 | 7 | _ | |2 DRIVER |a article |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1592312794_28448 |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 520 | _ | _ | |a A basic feature of liquid drops is that they can merge upon contact to form a larger drop. In spite of its importance to various applications, drop coalescence on pre-wetted substrates has received little attention. Here, we experimentally and theoretically reveal the dynamics of drop coalescence on a thick layer of a low-viscosity liquid. It is shown that these so-called 'liquid lenses' merge by the self-similar vertical growth of a bridge connecting the two lenses. Using a slender analysis, we derive similarity solutions corresponding to the viscous and inertial limits. Excellent agreement is found with the experiments without any adjustable parameters, capturing both the spatial and temporal structure of the flow during coalescence. Finally, we consider the crossover between the two regimes and show that all data of different lens viscosities collapse on a single curve capturing the full range of the coalescence dynamics. |
| 536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |x 0 |f POF III |
| 536 | _ | _ | |a DFG project 422916531 - Adaptive und schaltbare Grenzflächen basierend auf strukturierten Kolloiden |0 G:(GEPRIS)422916531 |c 422916531 |x 1 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Tewes, Walter |b 1 |
| 700 | 1 | _ | |0 P:(DE-Juel1)174311 |a Xie, Qingguang |b 2 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Datt, Charu |b 3 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Harth, Kirsten |b 4 |
| 700 | 1 | _ | |0 P:(DE-Juel1)167472 |a Harting, Jens |b 5 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Snoeijer, Jacco H. |b 6 |
| 773 | _ | _ | |0 PERI:(DE-600)1472655-5 |a 10.1103/PhysRevLett.124.194502 |n 19 |p 194502 – |t Physical review letters |v 124 |x 0031-9007 |y 2020 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874952/files/Self-Similar%20Liquid%20Lens%20Coalescence.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/874952/files/Self-Similar%20Liquid%20Lens%20Coalescence.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:874952 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)174311 |a Forschungszentrum Jülich |b 2 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)167472 |a Forschungszentrum Jülich |b 5 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF3-121 |1 G:(DE-HGF)POF3-120 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Erneuerbare Energien |v Solar cells of the next generation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1230 |2 StatID |a DBCoverage |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2020-01-11 |
| 915 | _ | _ | |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |a American Physical Society Transfer of Copyright Agreement |
| 915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 915 | _ | _ | |0 StatID:(DE-HGF)0571 |2 StatID |a DBCoverage |b SCOAP3 sponsored Journal |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b PHYS REV LETT : 2018 |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)9905 |2 StatID |a IF >= 5 |b PHYS REV LETT : 2018 |d 2020-01-11 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2020-01-11 |w ger |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2020-01-11 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
| 981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|