001     874952
005     20240712112952.0
024 7 _ |a arXiv:1912.06420
|2 arXiv
024 7 _ |a 10.1103/PhysRevLett.124.194502
|2 doi
024 7 _ |a 2128/25065
|2 Handle
024 7 _ |a pmid:32469577
|2 pmid
024 7 _ |a WOS:000532663000004
|2 WOS
024 7 _ |a altmetric:72878155
|2 altmetric
037 _ _ |a FZJ-2020-01719
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Hack, Michiel A.
|b 0
|e Corresponding author
245 _ _ |a Self-Similar Liquid Lens Coalescence
260 _ _ |a College Park, Md.
|b APS
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1592312794_28448
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A basic feature of liquid drops is that they can merge upon contact to form a larger drop. In spite of its importance to various applications, drop coalescence on pre-wetted substrates has received little attention. Here, we experimentally and theoretically reveal the dynamics of drop coalescence on a thick layer of a low-viscosity liquid. It is shown that these so-called 'liquid lenses' merge by the self-similar vertical growth of a bridge connecting the two lenses. Using a slender analysis, we derive similarity solutions corresponding to the viscous and inertial limits. Excellent agreement is found with the experiments without any adjustable parameters, capturing both the spatial and temporal structure of the flow during coalescence. Finally, we consider the crossover between the two regimes and show that all data of different lens viscosities collapse on a single curve capturing the full range of the coalescence dynamics.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|x 0
|f POF III
536 _ _ |a DFG project 422916531 - Adaptive und schaltbare Grenzflächen basierend auf strukturierten Kolloiden
|0 G:(GEPRIS)422916531
|c 422916531
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |0 P:(DE-HGF)0
|a Tewes, Walter
|b 1
700 1 _ |0 P:(DE-Juel1)174311
|a Xie, Qingguang
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Datt, Charu
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Harth, Kirsten
|b 4
700 1 _ |0 P:(DE-Juel1)167472
|a Harting, Jens
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Snoeijer, Jacco H.
|b 6
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.124.194502
|n 19
|p 194502 –
|t Physical review letters
|v 124
|x 0031-9007
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/874952/files/Self-Similar%20Liquid%20Lens%20Coalescence.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874952/files/Self-Similar%20Liquid%20Lens%20Coalescence.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:874952
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)174311
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167472
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)1230
|2 StatID
|a DBCoverage
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0571
|2 StatID
|a DBCoverage
|b SCOAP3 sponsored Journal
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV LETT : 2018
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b PHYS REV LETT : 2018
|d 2020-01-11
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2020-01-11
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21