000874975 001__ 874975
000874975 005__ 20220930130235.0
000874975 0247_ $$2doi$$a10.1371/journal.pone.0231152
000874975 0247_ $$2Handle$$a2128/24693
000874975 0247_ $$2altmetric$$aaltmetric:79349970
000874975 0247_ $$2pmid$$apmid:32267886
000874975 0247_ $$2WOS$$aWOS:000535967600030
000874975 037__ $$aFZJ-2020-01740
000874975 082__ $$a610
000874975 1001_ $$0P:(DE-Juel1)136817$$aWiesing, Michael$$b0$$eCorresponding author
000874975 245__ $$aAccuracy and precision of stimulus timing and reaction times with Unreal Engine and SteamVR
000874975 260__ $$aSan Francisco, California, US$$bPLOS$$c2020
000874975 3367_ $$2DRIVER$$aarticle
000874975 3367_ $$2DataCite$$aOutput Types/Journal article
000874975 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587393836_11511
000874975 3367_ $$2BibTeX$$aARTICLE
000874975 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874975 3367_ $$00$$2EndNote$$aJournal Article
000874975 520__ $$aThe increasing interest in Virtual Reality (VR) as a tool for neuroscientific research contrasts with the current lack of established toolboxes and standards. In several recent studies, game engines like Unity or Unreal Engine were used. It remains to be tested whether these software packages provide sufficiently precise and accurate stimulus timing and time measurements that allow inferring ongoing mental and neural processes. We here investigated the precision and accuracy of the timing mechanisms of Unreal Engine 4 and SteamVR in combination with the HTC Vive VR system. In a first experiment, objective external measures revealed that stimulus durations were highly accurate. In contrast, in a second experiment, the assessment of the precision of built-in timing procedures revealed highly variable reaction time measurements and inaccurate determination of stimulus onsets. Hence, we developed a new software-based method that allows precise and accurate reaction time measurements with Unreal Engine and SteamVR. Instead of using the standard timing procedures implemented within Unreal Engine, time acquisition was outsourced to a background application. Timing benchmarks revealed that the newly developed method allows reaction time measurements with a precision and accuracy in the millisecond range. Overall, the present results indicate that the HTC Vive together with Unreal Engine and SteamVR can achieve high levels of precision and accuracy both concerning stimulus duration and critical time measurements. The latter can be achieved using a newly developed routine that allows not only accurate reaction time measures but also provides precise timing parameters that can be used in combination with time-sensitive functional measures such as electroencephalography (EEG) or transcranial magnetic stimulation (TMS).
000874975 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000874975 588__ $$aDataset connected to CrossRef
000874975 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b1$$ufzj
000874975 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b2$$ufzj
000874975 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0231152$$gVol. 15, no. 4, p. e0231152 -$$n4$$pe0231152 -$$tPLOS ONE$$v15$$x1932-6203$$y2020
000874975 8564_ $$uhttps://juser.fz-juelich.de/record/874975/files/Wiesing_2020_Plos%20One_Accuracy%20and%20precision%20of%20stimulus%20timing%20and%20reaction%20times.pdf$$yOpenAccess
000874975 8564_ $$uhttps://juser.fz-juelich.de/record/874975/files/Wiesing_2020_Plos%20One_Accuracy%20and%20precision%20of%20stimulus%20timing%20and%20reaction%20times.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874975 8767_ $$d2020-04-14$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-19-28764$$zUSD 1595,-
000874975 909CO $$ooai:juser.fz-juelich.de:874975$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000874975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136817$$aForschungszentrum Jülich$$b0$$kFZJ
000874975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b1$$kFZJ
000874975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b2$$kFZJ
000874975 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000874975 9141_ $$y2020
000874975 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874975 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874975 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874975 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874975 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000874975 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2017
000874975 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874975 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874975 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874975 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874975 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874975 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874975 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874975 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874975 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874975 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874975 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874975 920__ $$lyes
000874975 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000874975 980__ $$ajournal
000874975 980__ $$aVDB
000874975 980__ $$aUNRESTRICTED
000874975 980__ $$aI:(DE-Juel1)INM-3-20090406
000874975 980__ $$aAPC
000874975 9801_ $$aAPC
000874975 9801_ $$aFullTexts