001     874975
005     20220930130235.0
024 7 _ |a 10.1371/journal.pone.0231152
|2 doi
024 7 _ |a 2128/24693
|2 Handle
024 7 _ |a altmetric:79349970
|2 altmetric
024 7 _ |a pmid:32267886
|2 pmid
024 7 _ |a WOS:000535967600030
|2 WOS
037 _ _ |a FZJ-2020-01740
082 _ _ |a 610
100 1 _ |a Wiesing, Michael
|0 P:(DE-Juel1)136817
|b 0
|e Corresponding author
245 _ _ |a Accuracy and precision of stimulus timing and reaction times with Unreal Engine and SteamVR
260 _ _ |a San Francisco, California, US
|c 2020
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1587393836_11511
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increasing interest in Virtual Reality (VR) as a tool for neuroscientific research contrasts with the current lack of established toolboxes and standards. In several recent studies, game engines like Unity or Unreal Engine were used. It remains to be tested whether these software packages provide sufficiently precise and accurate stimulus timing and time measurements that allow inferring ongoing mental and neural processes. We here investigated the precision and accuracy of the timing mechanisms of Unreal Engine 4 and SteamVR in combination with the HTC Vive VR system. In a first experiment, objective external measures revealed that stimulus durations were highly accurate. In contrast, in a second experiment, the assessment of the precision of built-in timing procedures revealed highly variable reaction time measurements and inaccurate determination of stimulus onsets. Hence, we developed a new software-based method that allows precise and accurate reaction time measurements with Unreal Engine and SteamVR. Instead of using the standard timing procedures implemented within Unreal Engine, time acquisition was outsourced to a background application. Timing benchmarks revealed that the newly developed method allows reaction time measurements with a precision and accuracy in the millisecond range. Overall, the present results indicate that the HTC Vive together with Unreal Engine and SteamVR can achieve high levels of precision and accuracy both concerning stimulus duration and critical time measurements. The latter can be achieved using a newly developed routine that allows not only accurate reaction time measures but also provides precise timing parameters that can be used in combination with time-sensitive functional measures such as electroencephalography (EEG) or transcranial magnetic stimulation (TMS).
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 1
|u fzj
700 1 _ |a Weidner, Ralph
|0 P:(DE-Juel1)131747
|b 2
|u fzj
773 _ _ |a 10.1371/journal.pone.0231152
|g Vol. 15, no. 4, p. e0231152 -
|0 PERI:(DE-600)2267670-3
|n 4
|p e0231152 -
|t PLOS ONE
|v 15
|y 2020
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874975/files/Wiesing_2020_Plos%20One_Accuracy%20and%20precision%20of%20stimulus%20timing%20and%20reaction%20times.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874975/files/Wiesing_2020_Plos%20One_Accuracy%20and%20precision%20of%20stimulus%20timing%20and%20reaction%20times.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874975
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131747
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21