Hauptseite > Workflowsammlungen > Publikationsgebühren > Application of Electric Current Assisted Sintering Techniques for the Processing of Advanced Materials > print |
001 | 874978 | ||
005 | 20240711114029.0 | ||
024 | 7 | _ | |a 10.1002/adem.202000051 |2 doi |
024 | 7 | _ | |a 1438-1656 |2 ISSN |
024 | 7 | _ | |a 1527-2648 |2 ISSN |
024 | 7 | _ | |a 2128/25250 |2 Handle |
024 | 7 | _ | |a WOS:000525906700001 |2 WOS |
037 | _ | _ | |a FZJ-2020-01743 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Bram, Martin |0 P:(DE-Juel1)129591 |b 0 |e Corresponding author |
245 | _ | _ | |a Application of Electric Current Assisted Sintering Techniques for the Processing of Advanced Materials |
260 | _ | _ | |a Frankfurt, M. |c 2020 |b Deutsche Gesellschaft für Materialkunde |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1594213118_2241 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Highly efficient energy conversion and storage technologies such as high‐temperature solid oxide fuel and electrolysis cells, all‐solid‐state batteries, gas separation membranes, and thermal barrier coatings for advanced turbine systems depend on advanced materials. In all cases, processing of ceramics and metals starting from powders plays a key role and is often a challenging task. Depending on their composition, such powder materials often require high sintering temperatures and show an inherent risk of abnormal grain growth, evaporation, chemical reaction, or decomposition, especially in the case of long dwelling times. Electric current‐assisted sintering (ECAS) techniques are promising to overcome these restrictions, but a lot of fundamental and practical challenges must be solved properly to take full advantage of these techniques. A broad and long‐term expertise in the field of ECAS techniques and comprehensive facilities including conventional field‐assisted sintering technology/spark plasma sintering (FAST/SPS), hybrid FAST/SPS (with additional heater), sinter forging, and flash sintering (FS) devices are available at the Institute of Energy and Climate Research: Materials Synthesis and Processing (IEK‐1). Herein, main advantages and challenges of these techniques are discussed and the concept to overcome current limitations is introduced on selected examples. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
536 | _ | _ | |a 174 - Plasma-Wall-Interaction (POF3-174) |0 G:(DE-HGF)POF3-174 |c POF3-174 |f POF III |x 1 |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Laptev, Alexander |0 P:(DE-Juel1)164315 |b 1 |
700 | 1 | _ | |a Mishra, Tarini Prasad |0 P:(DE-Juel1)166597 |b 2 |
700 | 1 | _ | |a Nur, Khushnuda |0 P:(DE-Juel1)176806 |b 3 |
700 | 1 | _ | |a Kindelmann, Moritz |0 P:(DE-Juel1)174079 |b 4 |
700 | 1 | _ | |a Ihrig, Martin |0 P:(DE-Juel1)174298 |b 5 |
700 | 1 | _ | |a Pereira da Silva, Joao |0 P:(DE-Juel1)171464 |b 6 |
700 | 1 | _ | |a Steinert, Ralf |0 P:(DE-Juel1)166059 |b 7 |
700 | 1 | _ | |a Buchkremer, Hans Peter |0 P:(DE-Juel1)129594 |b 8 |
700 | 1 | _ | |a Litnovsky, Andrey |0 P:(DE-Juel1)130090 |b 9 |
700 | 1 | _ | |a Klein, Felix |0 P:(DE-Juel1)166427 |b 10 |
700 | 1 | _ | |a Gonzalez-Julian, Jesus |0 P:(DE-Juel1)162271 |b 11 |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 12 |
773 | _ | _ | |a 10.1002/adem.202000051 |g p. adem.202000051 |0 PERI:(DE-600)2016980-2 |n 6 |p 2000051 |t Advanced engineering materials |v 22 |y 2020 |x 1527-2648 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/874978/files/adem.202000051.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/874978/files/adem.202000051.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:874978 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)164315 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)166597 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176806 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)174079 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)174298 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)171464 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)166059 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129594 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130090 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)166427 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)162271 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)161591 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |2 G:(DE-HGF)POF3-100 |v Plasma-Wall-Interaction |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENG MATER : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 1 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|