000875000 001__ 875000
000875000 005__ 20230515091802.0
000875000 0247_ $$2doi$$a10.1038/s41386-020-0669-0
000875000 0247_ $$2ISSN$$a0893-133X
000875000 0247_ $$2ISSN$$a1740-634X
000875000 0247_ $$2Handle$$a2128/25304
000875000 0247_ $$2altmetric$$aaltmetric:79349087
000875000 0247_ $$2pmid$$apmid:32268344
000875000 0247_ $$2WOS$$aWOS:000526237400001
000875000 037__ $$aFZJ-2020-01760
000875000 082__ $$a610
000875000 1001_ $$0P:(DE-HGF)0$$aMichely, Jochen$$b0
000875000 245__ $$aThe role of dopamine in dynamic effort-reward integration
000875000 260__ $$aBasingstoke$$bNature Publishing Group84063$$c2020
000875000 3367_ $$2DRIVER$$aarticle
000875000 3367_ $$2DataCite$$aOutput Types/Journal article
000875000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594995342_32528
000875000 3367_ $$2BibTeX$$aARTICLE
000875000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875000 3367_ $$00$$2EndNote$$aJournal Article
000875000 520__ $$aWhen deciding to act, the neurotransmitter dopamine is implicated in a valuation of prospective effort and reward. However, its role in dynamic effort-reward integration during action, a process central to everyday behaviour, remains unclear. In a placebo-controlled, within-subject, study, we probed the impact of increasing brain dopamine levels (150 mg of levodopa) and blocking dopamine receptors (1.5 mg of haloperidol) in the context of a novel dynamic effort task in healthy human subjects. We show that modulating homoeostatic dopamine balance distinctly alters implicit and explicit effort allocation as a function of instantaneous reward. Pharmacologically boosting dopamine enhanced motor vigour, reflected in an implicit increase in effort allocation for high rewards. Conversely, pharmacological blockade of dopamine attenuated sensitivity to differences in reward context, reflected in reduced strategic effort discounting. These findings implicate dopamine in an integration of momentary physical experience and instantaneous reward, suggesting a key role of dopamine in acting to maximise reward on the fly.
000875000 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000875000 542__ $$2Crossref$$i2020-04-08$$uhttps://creativecommons.org/licenses/by/4.0
000875000 542__ $$2Crossref$$i2020-04-08$$uhttps://creativecommons.org/licenses/by/4.0
000875000 588__ $$aDataset connected to CrossRef
000875000 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b1
000875000 7001_ $$00000-0002-7997-8137$$aHauser, Tobias U.$$b2
000875000 7001_ $$0P:(DE-HGF)0$$aDelker, Laura$$b3
000875000 7001_ $$00000-0001-9356-761X$$aDolan, Raymond J.$$b4
000875000 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b5$$eCorresponding author$$ufzj
000875000 77318 $$2Crossref$$3journal-article$$a10.1038/s41386-020-0669-0$$bSpringer Science and Business Media LLC$$d2020-04-08$$n9$$p1448-1453$$tNeuropsychopharmacology$$v45$$x0893-133X$$y2020
000875000 773__ $$0PERI:(DE-600)2008300-2$$a10.1038/s41386-020-0669-0$$n9$$p1448-1453$$tNeuropsychopharmacology$$v45$$x0893-133X$$y2020
000875000 8564_ $$uhttps://juser.fz-juelich.de/record/875000/files/s41386-020-0669-0.pdf$$yOpenAccess
000875000 8564_ $$uhttps://juser.fz-juelich.de/record/875000/files/s41386-020-0669-0.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875000 909CO $$ooai:juser.fz-juelich.de:875000$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b1$$kFZJ
000875000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b5$$kFZJ
000875000 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000875000 9141_ $$y2020
000875000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875000 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000875000 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROPSYCHOPHARMACOL : 2015
000875000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875000 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROPSYCHOPHARMACOL : 2015
000875000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875000 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000875000 920__ $$lyes
000875000 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000875000 980__ $$ajournal
000875000 980__ $$aVDB
000875000 980__ $$aUNRESTRICTED
000875000 980__ $$aI:(DE-Juel1)INM-3-20090406
000875000 9801_ $$aFullTexts
000875000 999C5 $$1M Botvinick$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-psych-010814-015044$$p83 -$$tAnnu Rev Psychol$$uBotvinick M, Braver T. Motivation and cognitive control: from behavior to neural mechanism. Annu Rev Psychol. 2015;66:83–113.$$v66$$y2015
000875000 999C5 $$1DM Barch$$2Crossref$$9-- missing cx lookup --$$a10.1007/7854_2015_376$$p411 -$$tCurr Top Behav Neurosci$$uBarch DM, Pagliaccio D, Luking K. Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci. 2016;27:411–49.$$v27$$y2016
000875000 999C5 $$1M Pessiglione$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awx278$$p629 -$$tBrain.$$uPessiglione M, Vinckier F, Bouret S, Daunizeau J, Le Bouc R. Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain. 2018;141:629–50.$$v141$$y2018
000875000 999C5 $$1MT Treadway$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0006598$$pe6598 -$$tPLoS ONE.$$uTreadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the ‘EEfRT'? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS ONE. 2009;4:e6598.$$v4$$y2009
000875000 999C5 $$1MC Klein-Flugge$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pcbi.1004116$$pe1004116 -$$tPLoS Comput Biol$$uKlein-Flugge MC, Kennerley SW, Saraiva AC, Penny WD, Bestmann S. Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation. PLoS Comput Biol. 2015;11:e1004116.$$v11$$y2015
000875000 999C5 $$1F Meyniel$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1211925110$$p2641 -$$tProc Natl Acad Sci USA$$uMeyniel F, Sergent C, Rigoux L, Daunizeau J, Pessiglione M. Neurocomputational account of how the human brain decides when to have a break. Proc Natl Acad Sci USA. 2013;110:2641–6.$$v110$$y2013
000875000 999C5 $$1A Zenon$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.3789-14.2015$$p8737 -$$tJ Neurosci.$$uZenon A, Sidibe M, Olivier E. Disrupting the supplementary motor area makes physical effort appear less effortful. J Neurosci. 2015;35:8737–44.$$v35$$y2015
000875000 999C5 $$1JD Salamone$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2012.10.021$$p470 -$$tNeuron.$$uSalamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–85.$$v76$$y2012
000875000 999C5 $$1ME Walton$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tins.2018.10.001$$p79 -$$tTrends Neurosci.$$uWalton ME, Bouret S. What is the relationship between dopamine and effort? Trends Neurosci. 2019;42:79–91.$$v42$$y2019
000875000 999C5 $$1JD Salamone$$2Crossref$$9-- missing cx lookup --$$a10.1016/0166-4328(94)90108-2$$p221 -$$tBehav Brain Res$$uSalamone JD, Cousins MS, Bucher S. Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res. 1994;65:221–9.$$v65$$y1994
000875000 999C5 $$1JG Hosking$$2Crossref$$9-- missing cx lookup --$$a10.1038/npp.2014.285$$p1005 -$$tNeuropsychopharmacology.$$uHosking JG, Floresco SB, Winstanley CA. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology. 2015;40:1005–15.$$v40$$y2015
000875000 999C5 $$1TT Chong$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cortex.2015.04.003$$p40 -$$tCortex.$$uChong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K, Tofaris GK, et al. Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex. 2015;69:40–6.$$v69$$y2015
000875000 999C5 $$1C Le Heron$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awy110$$p1455 -$$tBrain.$$uLe Heron C, Plant O, Manohar S, Ang YS, Jackson M, Lennox G, et al. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease. Brain. 2018;141:1455–69.$$v141$$y2018
000875000 999C5 $$1MC Wardle$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.4387-11.2011$$p16597 -$$tJ Neurosci.$$uWardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.$$v31$$y2011
000875000 999C5 $$1MT Treadway$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.6459-11.2012$$p6170 -$$tJ Neurosci.$$uTreadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.$$v32$$y2012
000875000 999C5 $$1R Le Bouc$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.3078-15.2016$$p6623 -$$tJ Neurosci.$$uLe Bouc R, Rigoux L, Schmidt L, Degos B, Welter ML, Vidailhet M, et al. Computational dissection of dopamine motor and motivational functions in humans. J Neurosci. 2016;36:6623–33.$$v36$$y2016
000875000 999C5 $$1A Zenon$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.4467-15.2016$$p9516 -$$tJ Neurosci.$$uZenon A, Devesse S, Olivier E. Dopamine manipulation affects response vigor independently of opportunity cost. J Neurosci. 2016;36:9516–25.$$v36$$y2016
000875000 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1037/t00742-000$$uBeck AT, Steer RA, Brown GK. Manual for the beck depression inventory-II (Psychological Corporation: San Antonio, TX, 1996).
000875000 999C5 $$1G Dahme$$2Crossref$$uDahme G, Jungnickel D, Rathje H. Psychometric properties of a German translation of the Achievement Motives Scale (AMS): comparison of results from Norwegian and German samples. Diagnostica. 1993;39:257–70.$$y1993
000875000 999C5 $$1R Nygård$$2Crossref$$9-- missing cx lookup --$$a10.1080/0031383730170104$$p46 -$$tScand J Educ Res$$uNygård R, Gjesme T. Assessment of achievement motives: comments and suggestions. Scand J Educ Res. 1973;17:46.$$v17$$y1973
000875000 999C5 $$1N Tambasco$$2Crossref$$9-- missing cx lookup --$$a10.2174/1570159X15666170510143821$$p1239 -$$tCurr Neuropharmacol.$$uTambasco N, Romoli M, Calabresi P. Levodopa in Parkinson's disease: current status and future developments. Curr Neuropharmacol. 2018;16:1239–52.$$v16$$y2018
000875000 999C5 $$1P Seeman$$2Crossref$$9-- missing cx lookup --$$a10.1517/14728222.10.4.515$$p515 -$$tExpert Opin Ther Targets$$uSeeman P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets. 2006;10:515–31.$$v10$$y2006
000875000 999C5 $$1A Pine$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.6028-09.2010$$p8888 -$$tJ Neurosci.$$uPine A, Shiner T, Seymour B, Dolan RJ. Dopamine, time, and impulsivity in humans. J Neurosci. 2010;30:8888–96.$$v30$$y2010
000875000 999C5 $$1B Pleger$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pbio.1000164$$pe1000164 -$$tPLoS Biol.$$uPleger B, Ruff CC, Blankenburg F, Kloppel S, Driver J, Dolan RJ. Influence of dopaminergically mediated reward on somatosensory decision-making. PLoS Biol. 2009;7:e1000164.$$v7$$y2009
000875000 999C5 $$1M Wininger$$2Crossref$$9-- missing cx lookup --$$a10.1682/JRRD.2007.11.0187$$p883 -$$tJ Rehabil Res Dev$$uWininger M, Kim NH, Craelius W. Pressure signature of forearm as predictor of grip force. J Rehabil Res Dev. 2008;45:883–92.$$v45$$y2008
000875000 999C5 $$1P Aravena$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnhum.2014.00163$$p163 -$$tFront Hum Neurosci$$uAravena P, Courson M, Frak V, Cheylus A, Paulignan Y, Deprez V, et al. Action relevance in linguistic context drives word-induced motor activity. Front Hum Neurosci. 2014;8:163.$$v8$$y2014
000875000 999C5 $$1F Rigoli$$2Crossref$$9-- missing cx lookup --$$a10.1162/jocn_a_00972$$p1303 -$$tJ Cogn Neurosci$$uRigoli F, Chew B, Dayan P, Dolan RJ. The dopaminergic midbrain mediates an effect of average reward on pavlovian vigor. J Cogn Neurosci. 2016;28:1303–17.$$v28$$y2016
000875000 999C5 $$1V Bonnelle$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jphysparis.2014.04.002$$p16 -$$tJ Physiol Paris$$uBonnelle V, Veromann KR, Burnett Heyes S, Lo Sterzo E, Manohar S, Husain M. Characterization of reward and effort mechanisms in apathy. J Physiol Paris. 2015;109:16–26.$$v109$$y2015
000875000 999C5 $$2Crossref$$uBorg G. Borg's perceived exertion and pain scales (Human Kinetics: Champaign, IL, 1998).
000875000 999C5 $$1G Borg$$2Crossref$$uBorg G. Anstrengungsempfinden und körperliche Aktivität. Dtsch Arztebl. 2004;15:1016–21.$$y2004
000875000 999C5 $$1J Van Cutsem$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40279-016-0672-0$$p1569 -$$tSports Med.$$uVan Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports Med. 2017;47:1569–88.$$v47$$y2017
000875000 999C5 $$1M Guitart-Masip$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1202229109$$p7511 -$$tProc Natl Acad Sci USA$$uGuitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E, Dolan RJ. Action controls dopaminergic enhancement of reward representations. Proc Natl Acad Sci USA. 2012;109:7511–6.$$v109$$y2012
000875000 999C5 $$1JD Salamone$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/aww050$$p1325 -$$tBrain.$$uSalamone JD, Yohn SE, Lopez-Cruz L, San Miguel N, Correa M. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain. 2016;139(Pt 5):1325–47.$$v139$$y2016
000875000 999C5 $$1R Tomer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopsycho.2007.08.001$$p98 -$$tBiol Psychol.$$uTomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND. Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol. 2008;77:98–101.$$v77$$y2008
000875000 999C5 $$1M Slifstein$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamapsychiatry.2014.2414$$p316 -$$tJAMA Psychiatry.$$uSlifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry. 2015;72:316–24.$$v72$$y2015
000875000 999C5 $$1TU Hauser$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1705643114$$pE7395 -$$tProc Natl Acad Sci USA$$uHauser TU, Eldar E, Dolan RJ. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proc Natl Acad Sci USA. 2017;114:E7395–404.$$v114$$y2017
000875000 999C5 $$1V Skvortsova$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.1350-14.2014$$p15621 -$$tJ Neurosci.$$uSkvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci. 2014;34:15621–30.$$v34$$y2014
000875000 999C5 $$1PL Lockwood$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41562-017-0131$$p0131 -$$tNat Hum Behav$$uLockwood PL, Hamonet M, Zhang SH, Ratnavel A, Salmony FU, Husain M, et al. Prosocial apathy for helping others when effort is required. Nat Hum Behav. 2017;1:0131.$$v1$$y2017