001     875000
005     20230515091802.0
024 7 _ |a 10.1038/s41386-020-0669-0
|2 doi
024 7 _ |a 0893-133X
|2 ISSN
024 7 _ |a 1740-634X
|2 ISSN
024 7 _ |a 2128/25304
|2 Handle
024 7 _ |a altmetric:79349087
|2 altmetric
024 7 _ |a pmid:32268344
|2 pmid
024 7 _ |a WOS:000526237400001
|2 WOS
037 _ _ |a FZJ-2020-01760
082 _ _ |a 610
100 1 _ |a Michely, Jochen
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The role of dopamine in dynamic effort-reward integration
260 _ _ |a Basingstoke
|c 2020
|b Nature Publishing Group84063
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594995342_32528
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a When deciding to act, the neurotransmitter dopamine is implicated in a valuation of prospective effort and reward. However, its role in dynamic effort-reward integration during action, a process central to everyday behaviour, remains unclear. In a placebo-controlled, within-subject, study, we probed the impact of increasing brain dopamine levels (150 mg of levodopa) and blocking dopamine receptors (1.5 mg of haloperidol) in the context of a novel dynamic effort task in healthy human subjects. We show that modulating homoeostatic dopamine balance distinctly alters implicit and explicit effort allocation as a function of instantaneous reward. Pharmacologically boosting dopamine enhanced motor vigour, reflected in an implicit increase in effort allocation for high rewards. Conversely, pharmacological blockade of dopamine attenuated sensitivity to differences in reward context, reflected in reduced strategic effort discounting. These findings implicate dopamine in an integration of momentary physical experience and instantaneous reward, suggesting a key role of dopamine in acting to maximise reward on the fly.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
542 _ _ |i 2020-04-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2020-04-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Viswanathan, Shivakumar
|0 P:(DE-Juel1)162395
|b 1
700 1 _ |a Hauser, Tobias U.
|0 0000-0002-7997-8137
|b 2
700 1 _ |a Delker, Laura
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dolan, Raymond J.
|0 0000-0001-9356-761X
|b 4
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 5
|e Corresponding author
|u fzj
773 1 8 |a 10.1038/s41386-020-0669-0
|b Springer Science and Business Media LLC
|d 2020-04-08
|n 9
|p 1448-1453
|3 journal-article
|2 Crossref
|t Neuropsychopharmacology
|v 45
|y 2020
|x 0893-133X
773 _ _ |a 10.1038/s41386-020-0669-0
|0 PERI:(DE-600)2008300-2
|n 9
|p 1448-1453
|t Neuropsychopharmacology
|v 45
|y 2020
|x 0893-133X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875000/files/s41386-020-0669-0.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875000/files/s41386-020-0669-0.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875000
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROPSYCHOPHARMACOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROPSYCHOPHARMACOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts
999 C 5 |a 10.1146/annurev-psych-010814-015044
|9 -- missing cx lookup --
|1 M Botvinick
|p 83 -
|2 Crossref
|u Botvinick M, Braver T. Motivation and cognitive control: from behavior to neural mechanism. Annu Rev Psychol. 2015;66:83–113.
|t Annu Rev Psychol
|v 66
|y 2015
999 C 5 |a 10.1007/7854_2015_376
|9 -- missing cx lookup --
|1 DM Barch
|p 411 -
|2 Crossref
|u Barch DM, Pagliaccio D, Luking K. Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci. 2016;27:411–49.
|t Curr Top Behav Neurosci
|v 27
|y 2016
999 C 5 |a 10.1093/brain/awx278
|9 -- missing cx lookup --
|1 M Pessiglione
|p 629 -
|2 Crossref
|u Pessiglione M, Vinckier F, Bouret S, Daunizeau J, Le Bouc R. Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain. 2018;141:629–50.
|t Brain.
|v 141
|y 2018
999 C 5 |a 10.1371/journal.pone.0006598
|9 -- missing cx lookup --
|1 MT Treadway
|p e6598 -
|2 Crossref
|u Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the ‘EEfRT'? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS ONE. 2009;4:e6598.
|t PLoS ONE.
|v 4
|y 2009
999 C 5 |a 10.1371/journal.pcbi.1004116
|9 -- missing cx lookup --
|1 MC Klein-Flugge
|p e1004116 -
|2 Crossref
|u Klein-Flugge MC, Kennerley SW, Saraiva AC, Penny WD, Bestmann S. Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation. PLoS Comput Biol. 2015;11:e1004116.
|t PLoS Comput Biol
|v 11
|y 2015
999 C 5 |a 10.1073/pnas.1211925110
|9 -- missing cx lookup --
|1 F Meyniel
|p 2641 -
|2 Crossref
|u Meyniel F, Sergent C, Rigoux L, Daunizeau J, Pessiglione M. Neurocomputational account of how the human brain decides when to have a break. Proc Natl Acad Sci USA. 2013;110:2641–6.
|t Proc Natl Acad Sci USA
|v 110
|y 2013
999 C 5 |a 10.1523/JNEUROSCI.3789-14.2015
|9 -- missing cx lookup --
|1 A Zenon
|p 8737 -
|2 Crossref
|u Zenon A, Sidibe M, Olivier E. Disrupting the supplementary motor area makes physical effort appear less effortful. J Neurosci. 2015;35:8737–44.
|t J Neurosci.
|v 35
|y 2015
999 C 5 |a 10.1016/j.neuron.2012.10.021
|9 -- missing cx lookup --
|1 JD Salamone
|p 470 -
|2 Crossref
|u Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–85.
|t Neuron.
|v 76
|y 2012
999 C 5 |a 10.1016/j.tins.2018.10.001
|9 -- missing cx lookup --
|1 ME Walton
|p 79 -
|2 Crossref
|u Walton ME, Bouret S. What is the relationship between dopamine and effort? Trends Neurosci. 2019;42:79–91.
|t Trends Neurosci.
|v 42
|y 2019
999 C 5 |a 10.1016/0166-4328(94)90108-2
|9 -- missing cx lookup --
|1 JD Salamone
|p 221 -
|2 Crossref
|u Salamone JD, Cousins MS, Bucher S. Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res. 1994;65:221–9.
|t Behav Brain Res
|v 65
|y 1994
999 C 5 |a 10.1038/npp.2014.285
|9 -- missing cx lookup --
|1 JG Hosking
|p 1005 -
|2 Crossref
|u Hosking JG, Floresco SB, Winstanley CA. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology. 2015;40:1005–15.
|t Neuropsychopharmacology.
|v 40
|y 2015
999 C 5 |a 10.1016/j.cortex.2015.04.003
|9 -- missing cx lookup --
|1 TT Chong
|p 40 -
|2 Crossref
|u Chong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K, Tofaris GK, et al. Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex. 2015;69:40–6.
|t Cortex.
|v 69
|y 2015
999 C 5 |a 10.1093/brain/awy110
|9 -- missing cx lookup --
|1 C Le Heron
|p 1455 -
|2 Crossref
|u Le Heron C, Plant O, Manohar S, Ang YS, Jackson M, Lennox G, et al. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease. Brain. 2018;141:1455–69.
|t Brain.
|v 141
|y 2018
999 C 5 |a 10.1523/JNEUROSCI.4387-11.2011
|9 -- missing cx lookup --
|1 MC Wardle
|p 16597 -
|2 Crossref
|u Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.
|t J Neurosci.
|v 31
|y 2011
999 C 5 |a 10.1523/JNEUROSCI.6459-11.2012
|9 -- missing cx lookup --
|1 MT Treadway
|p 6170 -
|2 Crossref
|u Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.
|t J Neurosci.
|v 32
|y 2012
999 C 5 |a 10.1523/JNEUROSCI.3078-15.2016
|9 -- missing cx lookup --
|1 R Le Bouc
|p 6623 -
|2 Crossref
|u Le Bouc R, Rigoux L, Schmidt L, Degos B, Welter ML, Vidailhet M, et al. Computational dissection of dopamine motor and motivational functions in humans. J Neurosci. 2016;36:6623–33.
|t J Neurosci.
|v 36
|y 2016
999 C 5 |a 10.1523/JNEUROSCI.4467-15.2016
|9 -- missing cx lookup --
|1 A Zenon
|p 9516 -
|2 Crossref
|u Zenon A, Devesse S, Olivier E. Dopamine manipulation affects response vigor independently of opportunity cost. J Neurosci. 2016;36:9516–25.
|t J Neurosci.
|v 36
|y 2016
999 C 5 |a 10.1037/t00742-000
|9 -- missing cx lookup --
|2 Crossref
|u Beck AT, Steer RA, Brown GK. Manual for the beck depression inventory-II (Psychological Corporation: San Antonio, TX, 1996).
999 C 5 |1 G Dahme
|y 1993
|2 Crossref
|u Dahme G, Jungnickel D, Rathje H. Psychometric properties of a German translation of the Achievement Motives Scale (AMS): comparison of results from Norwegian and German samples. Diagnostica. 1993;39:257–70.
999 C 5 |a 10.1080/0031383730170104
|9 -- missing cx lookup --
|1 R Nygård
|p 46 -
|2 Crossref
|u Nygård R, Gjesme T. Assessment of achievement motives: comments and suggestions. Scand J Educ Res. 1973;17:46.
|t Scand J Educ Res
|v 17
|y 1973
999 C 5 |a 10.2174/1570159X15666170510143821
|9 -- missing cx lookup --
|1 N Tambasco
|p 1239 -
|2 Crossref
|u Tambasco N, Romoli M, Calabresi P. Levodopa in Parkinson's disease: current status and future developments. Curr Neuropharmacol. 2018;16:1239–52.
|t Curr Neuropharmacol.
|v 16
|y 2018
999 C 5 |a 10.1517/14728222.10.4.515
|9 -- missing cx lookup --
|1 P Seeman
|p 515 -
|2 Crossref
|u Seeman P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets. 2006;10:515–31.
|t Expert Opin Ther Targets
|v 10
|y 2006
999 C 5 |a 10.1523/JNEUROSCI.6028-09.2010
|9 -- missing cx lookup --
|1 A Pine
|p 8888 -
|2 Crossref
|u Pine A, Shiner T, Seymour B, Dolan RJ. Dopamine, time, and impulsivity in humans. J Neurosci. 2010;30:8888–96.
|t J Neurosci.
|v 30
|y 2010
999 C 5 |a 10.1371/journal.pbio.1000164
|9 -- missing cx lookup --
|1 B Pleger
|p e1000164 -
|2 Crossref
|u Pleger B, Ruff CC, Blankenburg F, Kloppel S, Driver J, Dolan RJ. Influence of dopaminergically mediated reward on somatosensory decision-making. PLoS Biol. 2009;7:e1000164.
|t PLoS Biol.
|v 7
|y 2009
999 C 5 |a 10.1682/JRRD.2007.11.0187
|9 -- missing cx lookup --
|1 M Wininger
|p 883 -
|2 Crossref
|u Wininger M, Kim NH, Craelius W. Pressure signature of forearm as predictor of grip force. J Rehabil Res Dev. 2008;45:883–92.
|t J Rehabil Res Dev
|v 45
|y 2008
999 C 5 |a 10.3389/fnhum.2014.00163
|9 -- missing cx lookup --
|1 P Aravena
|p 163 -
|2 Crossref
|u Aravena P, Courson M, Frak V, Cheylus A, Paulignan Y, Deprez V, et al. Action relevance in linguistic context drives word-induced motor activity. Front Hum Neurosci. 2014;8:163.
|t Front Hum Neurosci
|v 8
|y 2014
999 C 5 |a 10.1162/jocn_a_00972
|9 -- missing cx lookup --
|1 F Rigoli
|p 1303 -
|2 Crossref
|u Rigoli F, Chew B, Dayan P, Dolan RJ. The dopaminergic midbrain mediates an effect of average reward on pavlovian vigor. J Cogn Neurosci. 2016;28:1303–17.
|t J Cogn Neurosci
|v 28
|y 2016
999 C 5 |a 10.1016/j.jphysparis.2014.04.002
|9 -- missing cx lookup --
|1 V Bonnelle
|p 16 -
|2 Crossref
|u Bonnelle V, Veromann KR, Burnett Heyes S, Lo Sterzo E, Manohar S, Husain M. Characterization of reward and effort mechanisms in apathy. J Physiol Paris. 2015;109:16–26.
|t J Physiol Paris
|v 109
|y 2015
999 C 5 |2 Crossref
|u Borg G. Borg's perceived exertion and pain scales (Human Kinetics: Champaign, IL, 1998).
999 C 5 |1 G Borg
|y 2004
|2 Crossref
|u Borg G. Anstrengungsempfinden und körperliche Aktivität. Dtsch Arztebl. 2004;15:1016–21.
999 C 5 |a 10.1007/s40279-016-0672-0
|9 -- missing cx lookup --
|1 J Van Cutsem
|p 1569 -
|2 Crossref
|u Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports Med. 2017;47:1569–88.
|t Sports Med.
|v 47
|y 2017
999 C 5 |a 10.1073/pnas.1202229109
|9 -- missing cx lookup --
|1 M Guitart-Masip
|p 7511 -
|2 Crossref
|u Guitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E, Dolan RJ. Action controls dopaminergic enhancement of reward representations. Proc Natl Acad Sci USA. 2012;109:7511–6.
|t Proc Natl Acad Sci USA
|v 109
|y 2012
999 C 5 |a 10.1093/brain/aww050
|9 -- missing cx lookup --
|1 JD Salamone
|p 1325 -
|2 Crossref
|u Salamone JD, Yohn SE, Lopez-Cruz L, San Miguel N, Correa M. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain. 2016;139(Pt 5):1325–47.
|t Brain.
|v 139
|y 2016
999 C 5 |a 10.1016/j.biopsycho.2007.08.001
|9 -- missing cx lookup --
|1 R Tomer
|p 98 -
|2 Crossref
|u Tomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND. Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol. 2008;77:98–101.
|t Biol Psychol.
|v 77
|y 2008
999 C 5 |a 10.1001/jamapsychiatry.2014.2414
|9 -- missing cx lookup --
|1 M Slifstein
|p 316 -
|2 Crossref
|u Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry. 2015;72:316–24.
|t JAMA Psychiatry.
|v 72
|y 2015
999 C 5 |a 10.1073/pnas.1705643114
|9 -- missing cx lookup --
|1 TU Hauser
|p E7395 -
|2 Crossref
|u Hauser TU, Eldar E, Dolan RJ. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proc Natl Acad Sci USA. 2017;114:E7395–404.
|t Proc Natl Acad Sci USA
|v 114
|y 2017
999 C 5 |a 10.1523/JNEUROSCI.1350-14.2014
|9 -- missing cx lookup --
|1 V Skvortsova
|p 15621 -
|2 Crossref
|u Skvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci. 2014;34:15621–30.
|t J Neurosci.
|v 34
|y 2014
999 C 5 |a 10.1038/s41562-017-0131
|9 -- missing cx lookup --
|1 PL Lockwood
|p 0131 -
|2 Crossref
|u Lockwood PL, Hamonet M, Zhang SH, Ratnavel A, Salmony FU, Husain M, et al. Prosocial apathy for helping others when effort is required. Nat Hum Behav. 2017;1:0131.
|t Nat Hum Behav
|v 1
|y 2017


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21