001     875003
005     20220930130235.0
024 7 _ |a 10.1088/2053-1583/ab89e5
|2 doi
024 7 _ |a 2128/25140
|2 Handle
024 7 _ |a altmetric:80261112
|2 altmetric
024 7 _ |a WOS:000543385800001
|2 WOS
037 _ _ |a FZJ-2020-01763
082 _ _ |a 530
100 1 _ |a Sonntag, Jens
|0 P:(DE-Juel1)167238
|b 0
|e Corresponding author
245 _ _ |a Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure
260 _ _ |a Bristol
|c 2020
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593157532_7921
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hexagonal boron nitride (BN), one of the very few layered insulators, plays a crucial role in 2D materials research. In particular, BN grown with a high pressure technique has proven to be an excellent substrate material for graphene and related 2D materials, but at the same time very hard to replace. Here we report on a method of growth at atmospheric pressure as a true alternative for producing BN for high quality graphene/BN heterostructures. The process is not only more scalable, but also allows to grow isotopically purified BN crystals. We employ Raman spectroscopy, cathodoluminescence, and electronic transport measurements to show the high-quality of such monoisotopic BN and its potential for graphene-based heterostructures. The excellent electronic performance of our heterostructures is demonstrated by well developed fractional quantum Hall states, ballistic transport over distances around 10 μm at low temperatures and electron-phonon scattering limited transport at room temperature.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Jiahan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Plaud, Alexandre
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Loiseau, Annick
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Barjon, Julien
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Edgar, J. H.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 6
773 _ _ |a 10.1088/2053-1583/ab89e5
|0 PERI:(DE-600)2779376-X
|n 3
|p 031009
|t 2D Materials
|v 7
|y 2020
|x 2053-1583
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875003/files/Sonntag_2020_2D_Mater._7_031009.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875003/files/Sonntag_2020_2D_Mater._7_031009.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875003
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180322
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b 2D MATER : 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b 2D MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21