001     875007
005     20210130004838.0
024 7 _ |2 doi
|a 10.18148/SRM/2020.V14I1.7374
024 7 _ |2 Handle
|a 2128/24692
024 7 _ |a WOS:000526085800005
|2 WOS
037 _ _ |a FZJ-2020-01765
041 _ _ |a en
082 _ _ |a 300
100 1 _ |0 P:(DE-Juel1)168187
|a Shamon, Hawal
|b 0
|e Corresponding author
245 _ _ |a Attention check items and instructions in online surveys with incentivized and non-incentivized samples: Boon or bane for data quality?
260 _ _ |a Konstanz
|b Survey Research Methods
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1587392345_13267
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In this paper, we examine rates of careless responding and reactions towards detection methods (i.e., attention check item and instruction) in an experimental setting based on two different samples. First, we use a quota sample (with monetary incentive), a central data source for internet-based surveys in sociological and political research. Second, we include a voluntary opt-in panel (without monetary incentive) well suited to conduct survey experiments (e.g., factorial surveys). Respondents’ reactions towards the detection items are analyzed by objective, non-reactive indicators (i.e., break-off, item nonresponse, and measurement quality), and two self-report scales. Our reaction analyses reveal that the detection methods that we applied are not only well suited to identify careless respondents but also exert a motivational rather than demotivating influence on respondents’ answer behavior and, hence, contribute to data quality.
536 _ _ |0 G:(DE-HGF)POF3-153
|a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |0 P:(DE-HGF)0
|a Berning, Carl Clemens
|b 1
773 _ _ |0 PERI:(DE-600)2269140-6
|a 10.18148/srm/2020.v14i1.7374
|n 1
|p 55-77
|t Survey research methods
|v 14
|x 1864-3361
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/875007/files/Shamon%20%26%20Berning%202020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875007/files/Shamon%20%26%20Berning%202020.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:875007
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168187
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-153
|1 G:(DE-HGF)POF3-150
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Technologie, Innovation und Gesellschaft
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0130
|2 StatID
|a DBCoverage
|b Social Sciences Citation Index
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SURV RES METHODS-GER : 2017
915 _ _ |0 StatID:(DE-HGF)1180
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21