001     875071
005     20210130004840.0
024 7 _ |a 10.1016/j.neubiorev.2020.04.011
|2 doi
024 7 _ |a 0149-7634
|2 ISSN
024 7 _ |a 1873-7528
|2 ISSN
024 7 _ |a 2128/26196
|2 Handle
024 7 _ |a altmetric:79815334
|2 altmetric
024 7 _ |a pmid:32302599
|2 pmid
024 7 _ |a WOS:000531531100028
|2 WOS
037 _ _ |a FZJ-2020-01783
082 _ _ |a 610
100 1 _ |a Bellucci, Gabriele
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The Emerging Neuroscience of Social Punishment: Meta-Analytic Evidence
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605623766_5910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Social punishment (SOP)-third-party punishment (TPP) and second-party punishment (SPP)-sanctions norm-deviant behavior. The hierarchical punishment model (HPM) posits that TPP is an extension of SPP and both recruit common processes engaging large-scale domain-general brain networks. Here, we provided meta-analytic evidence to the HPM by combining the activation likelihood estimation approach with connectivity analyses and hierarchical clustering analyses. Although both forms of SOP engaged the dorsolateral prefrontal cortex and bilateral anterior insula (AI), a functional differentiation also emerged with TPP preferentially engaging social cognitive regions (temporoparietal junction) and SPP affective regions (AI). Further, although both TPP and SPP recruit domain-general networks (salience, default-mode, and central-executive networks), some specificity in network organization was observed. By revealing differences and commonalities of the neural networks consistently activated by different types of SOP, our findings contribute to a better understanding of the neuropsychological mechanisms of social punishment behavior--one of the most peculiar human behaviors.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Camilleri, Julia
|0 P:(DE-Juel1)172024
|b 1
|u fzj
700 1 _ |a Iyengar, Vijeth
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 3
|u fzj
700 1 _ |a Krueger, Frank
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.neubiorev.2020.04.011
|g p. S014976342030066X
|0 PERI:(DE-600)1498433-7
|p 426-439
|t Neuroscience & biobehavioral reviews
|v 113
|y 2020
|x 0149-7634
856 4 _ |u https://juser.fz-juelich.de/record/875071/files/Main_manuscript%20Bellucci.pdf
|y Published on 2020-04-14. Available in OpenAccess from 2021-04-14.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:875071
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCI BIOBEHAV R : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROSCI BIOBEHAV R : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21