| Home > Publications database > The Emerging Neuroscience of Social Punishment: Meta-Analytic Evidence > print |
| 001 | 875071 | ||
| 005 | 20210130004840.0 | ||
| 024 | 7 | _ | |a 10.1016/j.neubiorev.2020.04.011 |2 doi |
| 024 | 7 | _ | |a 0149-7634 |2 ISSN |
| 024 | 7 | _ | |a 1873-7528 |2 ISSN |
| 024 | 7 | _ | |a 2128/26196 |2 Handle |
| 024 | 7 | _ | |a altmetric:79815334 |2 altmetric |
| 024 | 7 | _ | |a pmid:32302599 |2 pmid |
| 024 | 7 | _ | |a WOS:000531531100028 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-01783 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Bellucci, Gabriele |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a The Emerging Neuroscience of Social Punishment: Meta-Analytic Evidence |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605623766_5910 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Social punishment (SOP)-third-party punishment (TPP) and second-party punishment (SPP)-sanctions norm-deviant behavior. The hierarchical punishment model (HPM) posits that TPP is an extension of SPP and both recruit common processes engaging large-scale domain-general brain networks. Here, we provided meta-analytic evidence to the HPM by combining the activation likelihood estimation approach with connectivity analyses and hierarchical clustering analyses. Although both forms of SOP engaged the dorsolateral prefrontal cortex and bilateral anterior insula (AI), a functional differentiation also emerged with TPP preferentially engaging social cognitive regions (temporoparietal junction) and SPP affective regions (AI). Further, although both TPP and SPP recruit domain-general networks (salience, default-mode, and central-executive networks), some specificity in network organization was observed. By revealing differences and commonalities of the neural networks consistently activated by different types of SOP, our findings contribute to a better understanding of the neuropsychological mechanisms of social punishment behavior--one of the most peculiar human behaviors. |
| 536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
| 536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |f SMHB |x 1 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Camilleri, Julia |0 P:(DE-Juel1)172024 |b 1 |u fzj |
| 700 | 1 | _ | |a Iyengar, Vijeth |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 3 |u fzj |
| 700 | 1 | _ | |a Krueger, Frank |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.neubiorev.2020.04.011 |g p. S014976342030066X |0 PERI:(DE-600)1498433-7 |p 426-439 |t Neuroscience & biobehavioral reviews |v 113 |y 2020 |x 0149-7634 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875071/files/Main_manuscript%20Bellucci.pdf |y Published on 2020-04-14. Available in OpenAccess from 2021-04-14. |z StatID:(DE-HGF)0510 |
| 909 | C | O | |o oai:juser.fz-juelich.de:875071 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172024 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131678 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROSCI BIOBEHAV R : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROSCI BIOBEHAV R : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1120 |2 StatID |b BIOSIS Reviews Reports And Meetings |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|