000875075 001__ 875075
000875075 005__ 20210130004840.0
000875075 0247_ $$2doi$$a10.1093/bioinformatics/btz892
000875075 0247_ $$2ISSN$$a0266-7061
000875075 0247_ $$2ISSN$$a1367-4803
000875075 0247_ $$2ISSN$$a1367-4811
000875075 0247_ $$2ISSN$$a1460-2059
000875075 0247_ $$2Handle$$a2128/24703
000875075 0247_ $$2altmetric$$aaltmetric:71334309
000875075 0247_ $$2pmid$$apmid:31778142
000875075 0247_ $$2WOS$$aWOS:000536489400043
000875075 037__ $$aFZJ-2020-01786
000875075 082__ $$a570
000875075 1001_ $$0P:(DE-Juel1)179110$$aZerihun, Mehari B$$b0$$ufzj
000875075 245__ $$apydca v1.0: a comprehensive software for direct coupling analysis of RNA and protein sequences
000875075 260__ $$aOxford$$bOxford Univ. Press$$c2020
000875075 3367_ $$2DRIVER$$aarticle
000875075 3367_ $$2DataCite$$aOutput Types/Journal article
000875075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595508349_4402
000875075 3367_ $$2BibTeX$$aARTICLE
000875075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875075 3367_ $$00$$2EndNote$$aJournal Article
000875075 520__ $$aThe ongoing advances in sequencing technologies have provided a massive increase inthe availability of sequence data. This made it possible to study the patterns of correlated substitutionbetween residues in families of homologous proteins or RNAs and to retrieve structural and stabilityinformation. Direct coupling Analysis (DCA) infers coevolutionary couplings between pairs of residuesindicating their spatial proximity, making such information a valuable input for subsequent structureprediction. Here we presentpydca, a standalone Python-based software package for the DCA ofprotein- and RNA-homologous families. It is based on two popular inverse statistical approaches,namely, the mean-field and the pseudo-likelihood maximization and is equipped with a series offunctionalities that range from multiple sequence alignment trimming to contact map visualization.Thanks to its efficient implementation, features and user-friendly command line interface,pydcaisa modular and easy-to-use tool that can be used by researchers with a wide range of backgrounds.
000875075 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000875075 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000875075 588__ $$aDataset connected to CrossRef
000875075 7001_ $$0P:(DE-Juel1)177018$$aPucci, Fabrizio$$b1$$ufzj
000875075 7001_ $$0P:(DE-Juel1)177673$$aPeter, Emanuel K$$b2$$ufzj
000875075 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b3$$eCorresponding author
000875075 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btz892$$gVol. 36, no. 7, p. 2264 - 2265$$n7$$p2264 - 2265$$tBioinformatics$$v36$$x1460-2059$$y2020
000875075 8564_ $$uhttps://juser.fz-juelich.de/record/875075/files/805523v1.full.pdf$$yPublished on 2019-11-28. Available in OpenAccess from 2020-11-28.
000875075 8564_ $$uhttps://juser.fz-juelich.de/record/875075/files/btz892.pdf$$yRestricted
000875075 8564_ $$uhttps://juser.fz-juelich.de/record/875075/files/pydca.pdf$$yPublished on 2019-11-28. Available in OpenAccess from 2020-11-28.
000875075 8564_ $$uhttps://juser.fz-juelich.de/record/875075/files/805523v1.full.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-28. Available in OpenAccess from 2020-11-28.
000875075 8564_ $$uhttps://juser.fz-juelich.de/record/875075/files/btz892.pdf?subformat=pdfa$$xpdfa$$yRestricted
000875075 8564_ $$uhttps://juser.fz-juelich.de/record/875075/files/pydca.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-28. Available in OpenAccess from 2020-11-28.
000875075 909CO $$ooai:juser.fz-juelich.de:875075$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179110$$aForschungszentrum Jülich$$b0$$kFZJ
000875075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177018$$aForschungszentrum Jülich$$b1$$kFZJ
000875075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177673$$aForschungszentrum Jülich$$b2$$kFZJ
000875075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b3$$kFZJ
000875075 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000875075 9141_ $$y2020
000875075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875075 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000875075 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875075 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000875075 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOINFORMATICS : 2017
000875075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875075 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875075 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875075 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875075 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOINFORMATICS : 2017
000875075 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875075 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875075 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000875075 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875075 920__ $$lyes
000875075 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000875075 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000875075 980__ $$ajournal
000875075 980__ $$aVDB
000875075 980__ $$aI:(DE-Juel1)JSC-20090406
000875075 980__ $$aI:(DE-Juel1)NIC-20090406
000875075 980__ $$aUNRESTRICTED
000875075 9801_ $$aFullTexts