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Abstract. The ongoing advances in sequencing technologies have provided a massive increase in
the availability of sequence data. This made it possible to study the patterns of correlated substitution
between residues in families of homologous proteins or RNAs and to retrieve structural and stability
information. Direct coupling analysis (DCA) infers coevolutionary couplings between pairs of residues
indicating their spatial proximity, making such information a valuable input for subsequent structure
prediction. Here we present pydca, a standalone Python-based software package for the DCA of
protein- and RNA-homologous families. It is based on two popular inverse statistical approaches,
namely, the mean-field and the pseudo-likelihood maximization and is equipped with a series of
functionalities that range from multiple sequence alignment trimming to contact map visualization.
Thanks to its efficient implementation, features and user-friendly command line interface, pydca is
a modular and easy-to-use tool that can be used by researchers with a wide range of backgrounds.

Availability: https://github.com/KIT-MBS/pydca

Introduction

The exponential increase of sequence information due to the recent advances in sequencing technolo-
gies have triggered huge interest in statistical methods based on coevolution to retrieve structural
and energetic information from families of homologous proteins and RNA. Direct coupling analysis
(DCA) represents an accurate way to determine these biomolecular properties starting from a multiple
sequence alignment (MSA) of proteins or RNAs. As a key element of DCA, coevolving mutations
as part of the evolutionary history can represent a physical coupling and spatial proximity of residue
pairs. Inverse methods drawn from statistical physics are used to infer pairwise interactions resulting
from a physical contact/spatial proximity. In contrast to prior models based on Mutual Informa-
tion, they aim at transitive correlation effects. A wide variety of algorithms has been implemented
such as the message-passing DCA (mpDCA) [1], mean-field DCA (mfDCA) [2], pseudo-likelihood
maximization DCA (plmDCA) [3] or Boltzmann machine learning [4]. Top scoring pairs obtained
from DCA have been successfully used as constraints in molecular modeling tools to predict pro-
tein [4, 5, 6, 7, 8, 9, 10] and RNA three-dimensional structures [11, 12]. In addition, DCA-based
methods have been also employed to study effects of mutations on biomolecular properties. Here
we present pydca, a Python-based standalone tool that implements a mean-field and a pseudo-
likelihood approaches to DCA. The availability of this software, its user-friendly command line and
its computational efficiency, together with a rapidly growing number of sequences in databases such
as the protein- (Pfam) and the RNA-family database (Rfam) enable scientists from a wide range of
backgrounds to carry out DCA in a fast and comprehensive way.

*Contacts: Alexander Schug, al.schug@fz-juelich.de
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Figure 1: Schematic representation of the main features of the pydca software package. The software
package combines several functionalities for the contact prediction of proteins and RNA. It includes
the sequence backmapping, trimming of the MSA data, inverse inference using the mfDCA and
plmDCA algorithms and the final visualization of the DCA result. The software is implemented as a
standalone package, simplifying the process of installation and usage.

The software is implemented using the Python programming language and its structure follows
a modular architecture composed of sub-packages, where each encapsulates a specific task. The
dependencies such as Biopython [13] are Python-based and commonly available, which simplifies the
user-friendly installation and application in the contact prediction. The mean-field and the pseudo
likelihood inverse statistic parameter estimations are performed in two specific modules so that the
DCA computation of both protein- and RNA sequences is possible. The computational utilities
provided by pydca are:

• Curation and trimming of the MSA input data

• Mean-field computation of DCA scores summarized by direct information, Frobenius norm or
their average product corrected forms

• Pseudo-likelihood maximization computation of DCA scores summarized by direct information,
Frobenius norm or their average product corrected forms.

• Mapping the residues of a reference sequence to the corresponding columns in the MSA when
an optional reference sequence is supplied

• Computation of the energy function of the global probability model

• Contact map comparison of DCA-predicted residue pairs with an existing PDB contact map
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• Visualization of the true positive rates per rank of residue pairs ranked by coevolutionary scores

The software provides a convenient command line interface for executing specific computations at
a time. Each (sub)command is documented and can be looked up through help messages. A typ-
ical DCA computation using the mean-field algorithm after the installation is for example: mfdca

compute di <biomolecule> <alignment file> --verbose, where <biomolecule> takes PRO-
TEIN or RNA (case insensitive) and <alignment file> is a FASTA formatted file containing MSA
data. This triggers the mean field computation of DCA scores summarized by direct information [2]
score. When executed in verbose mode (optional argument --verbose), it provides extensive logging
messages and thereby enables the user to keep track of the computation process. Detailed examples
of both mfDCA and plmDCA computation using pydca can be found in the supplementary material.

Our implementation of DCA using the mean-field and the pseudo likelihood inverse statistics
algorithms provides a suitable lightweight and easy-to-use software that will facilitate extensive com-
putations on the growing sequence data. The mean-field algorithm of pydca is computationally
very efficient. On the other hand, the pseudolikelihood implementation typically results in better
performance in terms of accuracy.

Finally pydca provides in a single package a series of additional DCA computation utilities for
protein and RNA sequences such as the trimming of the MSA and the TPP rate computation that
will facilitate the user in the computation and in the analysis of DCA results.

Background: Direct Coupling Analysis

Direct Coupling Analysis (DCA) infers coevolutionary related residues pairs from a multiple sequence
alignment (MSA) for proteins and RNA. High coevolutionary scores indicate spatial proximity/physical
contacts of the involved residues, the contact information improves modeling of three-dimensional
biomolecular structures in structure prediction tools. Mathematically, the statistical model of DCA
assigns probabilities to sequences in a given family of homologous proteins or RNAs. The probability
P (S) that a biological sequence S = a1a2...aL of length L is sampled through the course of evolution
is given by the

P (S) =
1

Z
exp(−βH), (1)

where β is the inverse temperature, Z is the normalization constant (also known as partition function)
and H stands for the energy function of the system, which is written as

− βH =
L−1
∑

i=

L
∑

j=i+1

Jij(ai, aj) +
L
∑

i=1

hi(ai), (2)

as function of single- and 2-body couplings hi(ai), Jij(ai, aj) that quantify the coupling strength
between pairs of sites i and j for positions ai and aj, respectively. The single site fields are a measure
of the local field strength at a site i to a residue or a gap state ai. With the energy function in
equation 2, the partition function is given by

Z =
∑

a1,a2,...,aL

exp[
L−1
∑

i=1

L
∑

j=i+1

Jij(ai, aj) +
L
∑

i=1

hi(ai)]. (3)

For a sequence of length L, a total number of 1

2
L(L−1)q2 couplings and Lq fields is determined,

where q is the total number of states at a site (5 for RNA and 21 for proteins). The total number
of unique parameters that can be obtained equals 1

2
L(L− 1)(q− 1)2 and L(q− 1) for the couplings

and fields, respectively [1].
Computing the summation in equation 3 is computationally costly. It scales as O(qL). As a

result inverse statistical inference methods to estimate the fields and couplings rely on approximation

3



methods. The couplings and fields are approximated using inverse statistical algorithms such as the
message passing direct-coupling analysis (mpDCA) [1], mean-field DCA (mfDCA) [2] and pseudo-
likelihood maximization DCA (plmDCA) [3, 14]. Among that group of methods, mfDCA is very
efficient due to the properties of the mean-field approach. The determination of the 2-body couplings
consists of a matrix inversion, while the fields are determined through a self-consistency criterion [2].
On the other hand plmDCA usually performs better than mfDCA in terms of accuracy as measured
by positive predictive value.

The scores ranking each pair of sites can be conventionally computed using the Frobenius Fij

norm for the couplings between sites i and j:

Fij =

√

√

√

√

q−1
∑

a=1

q−1
∑

b=1

|Jij(a, b)|
2. (4)

Alternatively, scores can be computed from the direct information DIij, which is defined by :

DIij =

q−1
∑

a=1

q−1
∑

b=1

P dir
ij (a, b) log

P dir
ij (a, b)

fi(a)fj(b)
. (5)

In equation 5, fi(a) stands for single-site frequency counts for residue a in the MSA and the summation
is performed over q − 1 states (gap states are excluded). The direct probability P dir

ij is given as

P dir
ij (a, b) =

1

Zij

exp[Jij(a, b) + h̃i(a) + h̃j(b)], (6)

where Zij stands for the normalization constant and h̃i are the single site fields. The DCA scores
obtained by using the Frobenius norm or direct information are recomputed using average product
correction (APC). Denoting the DCA score by S, the average product corrected values are obtained
using

S
apc
ij = Sij −

S.jSi.

S..

, (7)

where . denotes the average over the corresponding index.
In mean-field DCA [2], the couplings Jij(a, b) are defined as the inverse of the matrix Cij(a, b),

Jij(a, b) = −C−1

ij (a, b)

= −(fij(a, b)− fi(a)fj(b))
−1, (8)

as a function of the single-site fi(a) and pair-site fij(a, b) frequencies. These couplings are then used
in equation 6 to estimate the two single-site fields (h̃i and h̃j) in an iterative procedure by constraining
the marginal probabilities of the direct information to be consistent with single-site frequencies as:

fi(a) =

q
∑

b=1

P dir
ij (a, b) (9)

fj(b) =

q
∑

a=1

P dir
ij (a, b). (10)

In the pseudolikelihood maximization direct coupling analysis (plmDCA) each site i in a sequence
m is described by a conditional probability of being occupied by a residue ami in the presence of
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residues in other sites as Pm
i = Pm

i (ami |a
m
1 , ..., a

m
i+1, ..., a

m
L ). This conditional probability can be

written in terms of a new energy function (instead of equation 2) as

Pm
i =

exp[hi(a
m
i ) +

∑

j 6=i Jij(a
m
i , a

m
j )]

Zm
i

, (11)

where Zm
i is the normalization constant and is given by

Zm
i =

q
∑

a=1

exp[hi(a) +
∑

j 6=i

Jij(a, b
m
j )]. (12)

The pseudolikelihood l is the product of the conditional probabilities for the entire MSA data. It’s
given by

l({h}, {J}) =
M
∏

m=1

L
∏

i=1

Pm
i . (13)

The fields and couplings are estimated by maximizing (or equivalently minimizing the negative) log-
pseudolikelihood with regularization. In pydca, we use L2 norm regularization for both the fields and
couplings. The objective function F is obtained from the sum of the negative log-pseudolikelihood
plus the regularization terms, i.e.,

F ({h}, {J}, λh, λJ) = − log(l({h}, {J}))

+R(λh, λJ , {h}, {J})
(14)

where

log(l({h}, {J})) =
M
∑

m=1

L
∑

i=1

[hi(a
m
i )

+
∑

i 6=j

Jij(a
m
i , a

m
j )]− log(Zm

i )

(15)

and

R(λh, λJ , {h}, {J}) = λh

L
∑

i=1

q
∑

a=1

|hi(a)|
2

+ λJ

L−1
∑

i=1

L
∑

j=i+1

q
∑

a=1

q
∑

b=1

|Jij(a, b)|
2.

(16)

The fields and couplings are estimated by minimizing the objective function F . This is done by
using gradient descent which requires computation of gradients of the fields and couplings from the
objective function. The gradients of F are given by

∂F

∂hi(a)
=

M
∑

m=1

[Pm
i (a)− δ(ami = a)] + 2λhhi(a) (17)

and

∂F

∂Jij(a, b)
=

M
∑

m=1

[Pm
i (a)− δ(ami = a)]δ(amj = b)

+ 2λJJij(a, b)

(18)
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where δ(x = y) is one when x = y and zero otherwise. The fields and couplings are computed starting
from an initial value using iterative procedure. Like the mean-field DCA, scores in pseudolikelihood
maximization DCA are quantified either by the Frobenius norm of couplings or by computing the direct
information for site-pairs. Note that equations 17 and 18 contain summation over the sequences in
the MSA. When sequences are reweighed (see next section) their contribution to the gradients is
scaled by the weight. As a result the summation changes from

∑

m 1 to
∑

m ωm where ωm is the
weight of the mth sequence in the MSA.

The DCA scores deliver quantitative information about the existence of physical contacts in a
three-dimensional structure of a biomolecule, where top-scoring pairs are typically used as constraints
in molecular modeling tools to predict protein [4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18] and RNA
[11, 12, 19, 20] structures. In addition, the energy function of DCA has been used to study effects of
mutations [21, 22, 23, 24]. A summary of the various applications of the DCA method can be found
in reference [25].

Figure 2: Snapshot of running a DCA computation using the pydca software on the command
line in verbose mode. Each logging message starts with a logging level (e.g., INFO), followed by
date and time of display. Afterwards, the name of the module that was used and its corresponding
function/method are listed. Task messages are displayed underneath in a new line.

Methods: pydca Implementation

Input Data

The input data for pydca is an MSA dataset. pydca provides utilities for MSA gap trimming,
performs sequence reweighing and a regularization of the dataset.

MSA trimming. The accuracy of the DCA computation in general depends on the quality of MSA
data. In particular, removing columns in the MSA dataset containing too many gaps reduces the
noise, which adversely affects the results. Additionally, pydca provides an optional MSA trimming
utility, which automatically removes gaps in the MSA columns with respect to the best matching
sequence in relation to the reference sequence.

Sequence reweighing. From the alignment, single- and double-site frequency counts are computed
as

fi(a) =
1

Meff

M
∑

m=1

δ(am = a)ωm (19)

fij(a, b) =
1

Meff

M
∑

m=1

δ(am = a)δ(bm = b)ωm (20)
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where a and b denote residue or gap states at sites i and j, respectively, while δ(x = y) is one
when x = y and zero otherwise. ωm is the weight of the mth sequence and Meff =

∑

m ωm is the
effective number of sequences in the alignment. The weights of the sequences in the MSA dataset
are determined by setting a cut-off value on the sequence identity.

Input data regularization. Not all protein or RNA families have a sufficient number of sequences to
ensure statistical consistency, such as redundant data or phylogenetic biases. In particular, mean-field
DCA matrix inversion may fail due to singularity of the correlation matrix constructed from raw MSA
data. To circumvent this problem, input data is regularized by adding pseudocounts to the frequency
measures. Using the pseudocounts, the expressions modify to

f̂i(a) =
θ

q
+ (1− θ)fi(a), (21)

f̂ij(a, b) =
θ

q2
+ (1− θ)fij(a, b), (22)

where θ controls the pseudocount.

Algorithm

The two algorithms (mfDCA and plmDCA) in pydca start with the computation of sequence weights,
which requires a comparison between individual pairs in the MSA. That formalism contains a time
complexity of O(M2L2), where M is the total number of sequences in the MSA and L is the sequence
length. The subsequent inversion of the correlation matrix to compute the couplings using mean-field
DCA scales with O(L3q3). If a reference sequence is added, the mapping is done using Biopython’s
pairwise sequence alignment utilities [13]. This task has a time complexity of O(MLrefLmin), where
Lref is the reference sequence length and Lmin is the length of the shortest sequence in the alignment
after removal of MSA gaps.

For mean-field DCA, single- and pair-site frequencies are computed from MSA data and stored for
the inverse statistical parameter estimation. The highest memory consumption occurs at the storage
of the pair-site frequencies and the correlation matrix. These processes consume a storage on the
order of O(L2q2). All other processes require a lower amount of memory.

The plmDCA algorithm requires storage of the fields and couplings, and the corresponding gra-
dients obtained from the objective function. Like the correlation matrix in mean-field DCA, this
requires storage of O(L2q2). The time complexity scales as O(L4q3MN) where N is the number of
gradient descent iterations.

Usage

General Information : As a Python-based package, pydca can be used by importing it into other
Python source codes or can be installed and used as a command line tool. The command line interface
of pydca allows to control the input parameters and provides extensive logging messages that help
to keep track of the DCA computation progress (see Figure 2). The logging messages are ranked
within different levels:

1. INFO: These logging messages provide information about DCA computation progress

2. WARNING : Logging messages are issued whenever pydca encounters ambiguities and resolves
them by its own means, e.g., if a reference sequence file contains more than one reference
sequence, pydca takes the first one and proceeds the computation

3. ERROR : Logging messages are signaled when errors occur, e.g., whenever a wrong parameter
value is chosen. In case pydca detects an error, it sends an indicative error occurred and
terminates the computation
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MSA trimming command : Before starting DCA computation, one can curates MSA data by trimming
some of the columns of the MSA. For example, all columns in the MSA containing gaps beyond a
certain gap threshold are removed:

pydca trim by gap size <msa file> --max gap 0.9 --verbose

pydca is one of the main commands provided when pydca is installed.
The sub-command trim by gap size triggers

MSA trimming based on the fraction of gaps found in MSA columns. <msa file> refers to the
MSA file supplied by the user. The optional parameter --max gap is used to set the gap threshold
(in this case, MSA columns containing more than 90% of gaps will be trimmed) and --verbose

enables logging messages to be displayed on the terminal (see Figure 2). Another option in the MSA
trimming function is defined by:

pydca trim by refseq <biomolecule> <msa file> <refseq file> --remove all gaps

--verbose

Here, the new subcommand trim by refseq is used to trim the MSA based on information about
the reference sequence obtained from the file <refseq file> supplied by the user. The argument
<biomolecule> takes either of the values PROTEIN or RNA (case-insensitive). The optional argument
--remove all gaps removes all gaps in the MSA found in the matching sequence with respect to
the reference sequence. If this argument is not supplied, only those gaps in the matching sequence
beyond a gap threshold (default 0.5) are removed.

DCA computation commands. Coevolutionary scores for pairs of sites in MSA can be obtained from
either the Frobenius norm (equation 4) or the direct information (equation 5). To compute the direct
information using mean-field DCA, one can execute:

mfdca compute di <biomolecule> <msa file> --verbose

The subcommand compute di initiates the computation of DCA scores summarized by direct in-
formation. Similarly to compute DCA scores summarized by the Frobenius norm of couplings, we
use

mfdca compute fn <biomolecule> <msa file> --verbose

The corresponding command for plmDCA is

plmdca compute fn <biomolecule> <msa file> --num threads 6 --max iterations 500

--verbose

Here the optional argument --num threads the number of threads for parallel execution. If not
set, plmDCA uses a single thread, --max iterations sets the maximum number of iterations for
gradient descent.

If a reference sequence file is supplied, the scores corresponding to residue pairs in the reference
sequence are computed by mapping the reference sequence to the best matching sequence in the
MSA. The best matching sequence in the MSA is searched by pairwise local alignment. When a
reference sequence is supplied, the command for mfDCA for computing Frobenius norm is

mfdca compute fn <biomolecule> <msa file> --refseq file <refseq file> --verbose

whereas the plmDCA command becomes

plmdca compute fn <biomolecule> <msa file> --num threads 6 --max iterations 500

--refseq file <refseq file> --verbose
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Furthermore, average product correction can be done for the DCA scores. In pydca, this is done by
using --apc optional argument. For example, using plmDCA

plmdca compute fn <biomolecule> <msa file> --num threads 4 --max iterations 100

--refseq file <refseq file> --apc --verbose

Visualization command. The result of DCA computation varies based on the input parameters
used, e.g., nature of MSA data, regularization and sequence reweighing. The MSA data can be
curated in various ways. Regularization is typically done using pseudocounts (equations 21 and 22)
for mfDCA or using L2 norms (equation 16) for plmDCA, whereas sequence reweighing is achieved by
setting cut-off value for sequence similarity. To assess how coevolutionary scores are affected by these
parameters, pydca provides a quick visualization utility. One way of assessing DCA performance is
to look up the contact map of a sequence that has an already resolved PDB structure. In pydca,
this is done on the command line using:

pydca plot contact map <biomolecule> <pdb chain name> <pdb file> <refseq file>

<dca file>

The new positional argument <pdb chain name> refers to the chain identifier (chain ID) of the PDB
structure chain, <pdb file> the PDB file, <refseq file> the file containing the reference sequence
and <dca file> the file containing DCA scores as computed by pydca. Note that instead of a PDB
file, we can also provide a PDB id and pydca downloads the PDB file from the RCSB PDB database
[26]. By default, the top L DCA pairs are taken for contact map comparison. These DCA pairs are
filtered among all pairs such that they are a few residues apart in the primary sequence. The default
separation between these pairs is at least four residues. The user can change this values by using the
optional argument --linear dist. Often, PDB files contain multiple chains and it may be difficult
to know the existing chains without parsing the PDB file. pydca provides a command to display the
content of a PDB file when run in verbose mode

pydca pdb content <pdb file> --verbose

Another way of visualizing and evaluating DCA scores is to look at the true positive (TP) rate
per rank of the predicted pairs.1 The TP rate per rank is the number of correctly predicted contacts
divided by all predictions at that rank. This can be done in pydca by

pydca plot tp rate <biomolecule> <pdb chain name> <pdb file> <ref file>

<dca file>.

This displays a plot of the TP rate per rank of all ranked pairs. As with the contact map, the
default filtering criterion is set to a minimum of four residues in between ranked pairs in the primary
sequence. Setting --linear dist to zero overrides this filtering criterion and plots the TP rate of
all pairs. Information about all available commands and command line arguments can be accessed
via the --help optional argument.

Use of pydca as library. In addition to the command line interfaces pydca can be used as a library
by importing it into other python source codes. This is done by importing the desired module of
pydca. For example, to use the plmDCA algorithm of pydca:

from pydca.plmdca import plmdca

Now we have access to the plmdca module, which allows to create a plmDCA object and execute
DCA computations in our Python source code. For detailed examples about using pydca as a library,
we refer to https://github.com/KIT-MBS/pydca

1Naturally, this analysis can only be done if the real contacts are known, e.g. from a biomolecular structure. The

TP rate therefore merely tests the quality of contact prediction.
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Results: pydca Application

Contact Predictions

In this section, we present some examples of DCA computation using the pydca software choosing
six proteins and six RNAs for validation. The selection criteria of these proteins/RNAs was based
on i) existence of sufficient number of sequences for the corresponding families and ii) existence of
an experimentally resolved PDB structure so that DCA predicted contacts can be compared with
the experimental contact patterns. We considered the following Pfam-sets and PDB structures:
PF04542.14 (1or7), PF01497.18 (1n2z), PF00486.28 (2hwv), PF00534.20 (2iv7), PF00691.20 (1oap)
and PF13344.6 (2pt1). As RNA families and PDB structures we used RF00059 (2gdi), RF00162
(2gis), RF00167 (1y26), RF00504 (3owi), RF01051 (3irw) and and RF01734 (3vrs).

The sequences of these families were retrieved from the RFAM and PFAM [27, 28] databases
and aligned using HMMER (proteins) or infernal (RNA) software [29, 30]. The reference sequences
were included in the homologous family if not already present before the alignment. The resulting
alignments were trimmed using the reference sequence in a way that only the columns corresponding
to reference sequence’s residues were taken into account. All others were discarded as noise.

Contact map visualization

Here we show the visualization features of pydca by a visual comparison of the DCA predicted contact
maps with those obtained from the PDB structures for (A) the TPP riboswitch RNA (RF00059, PDB
ID 2gdi) and (B) Sigma70 protein (PF04542.14 PDB ID 1or7). For this comparison, we took the
top L DCA-ranked pairs (see Figure 3).

In that figure, the grey dots denote the contact as obtained from PDB structures, others are those
of DCA contacts as predicted by pydca. The red dots represent false positives and the blue are those
missing in PDB that cannot be categorized as false or true positives. The green and black dots are
true positives. The black dots represent RNA secondary structure annotations as in the consensus
secondary structure of RFAM.

Two residues or two nucleobases are considered to be in physical contact if they have at least a
pair of heavy atoms (i.e. non hydrogen atoms) that are less than 8 Å apart in the PDB structure. In
addition, we required a minimum sequence distance of 4, i.e. we only considered residue pairs that
are not in proximity in the sequence (for sites i and j, we set |i− j| > 4).

Evaluation of pydca performance

Here, we assess the performance of the mean-field and pseudolikelihood maximization algorithms
implementation in pydca. In addition we compare these two flavor of pydca with that of EVcouplings
[12, 31] and GREMLIN [32], two pseudo-likelihood maximization DCA methods implemented in C
and C++ programming language respectively. We used a Desktop computer with processor Intel
corei7-8700 CPU 3.20GHx12 running on Ubuntu 18.04 LTS and setting the number of threads equal
to 10.

We performed computation of DCA scores quantified by Frobenius norm with average prodcut
correction (APC). The input parameters are set to the values: the sequence identity 0.8, and the
pseudocount (value of θ in equations 21 and 22) for the mfDCA to be 0.5. The regularization
parameters for plmDCA are set to λh = 1 and λJ = 0.2(L−1) for pydca, EVcouplings and GREMLIN.
We also set the maximum number of iterations for gradient descent to be large enough so that
convergence is reached prior to reaching this limit. Then we computed the true positive rates (TP)
of the six proteins and RNAs taking the top L DCA ranked site pairs.

Table 1 lists the true positive rates for six protein and RNA families used for comparing the two
flavors of pydca implementation (mfDCA and plmDCA), EVcouplings and GREMLIN.
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Figure 3: Comparison of pydca predicted contacts with PDB contacts. We used the direct-
information scores computed using the mean-field algorithm for contact prediction. In (A) we show
the PDB ID 1or7 (protein family PF04542.14) and in (B) PDB ID 2gdi (RNA family RF00059). The
grey dots are PDB contacts, others are predicted by pydca. The red dots are false positives, blue ones
are due to missing residues in the PDB structure. The green and black dots are true positives, where
the black ones represent the secondary structure pairs in the RFAM consensus secondary structure.

Despite the simplicity of the mean-field DCA approach, the computation reaches a very good
average TP score of about 80% and 60% for the top-L contacts considered in the protein and RNA
structures respectively. Moreover, the computation is also very fast running all these middle-size
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Figure 4: True-positive rates per rank for six protein (A) and six RNA (B) families. The grey line
is the average of the true positive rate obtained from PDB structures, representing the theoretically
maximum possible true positive rate. The black lines are the average of DCA true positive rates as
computed by pydca’s mean-field algorithm.

entries in about 50 minutes for proteins or less then half-minute for RNAs, making mfpydca the
perfect tool for analyzing large amount of data.

The three pseudo-likelihood implementations are slightly more accurate than the mean-field DCA
approach, in particular for proteins where there is a statistical significant improvement of the TP
rate score of about 7%. No significant difference between mean-field and the pseudo-likelihood
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approaches has been observed for the six RNAs. Our implementation (plmpydca) has on average
the same accuracy of EVcouplings and GREMLIN. Speed-wise, plmpydca is slightly slower than
EVcoupling for proteins and slightly faster for RNAs. plmpydca outperforms GREMLIN in terms of
speed for both proteins and RNAs.

Proteins
PDB L Family Depth pydca (mf) pydca (plm) EVcouplings GREMLIN
code PFAM MSA TP time TP time TP time TP time

(L) (m) (L) (m) (L) (m) (L) (m)
1or7 68 PF04542.14 110236 83.8 ∼5 91.2 ∼13 91.2 ∼12 95.0 ∼29
1nz2 202 PF01497.18 22728 71.8 ∼6 78.2 ∼23 74.8 ∼14 73.2 ∼45
2hwv 77 PF00486.28 93659 80.5 ∼6 88.3 ∼18 89.6 ∼14 89.6 ∼25
2iv7 170 PF00534.20 91911 89.8 ∼30 92.2 ∼135 90.4 ∼54 93.3 ∼133
1oap 96 PF00691.20 33460 93.8 ∼2 97.9 ∼10 97.9 ∼7 97.9 ∼14
2pt1 242 PF13344.6 10114 68.6 ∼2 75.6 ∼12 73.1 ∼7 72.7 ∼29

RNAs
PDB L Family Depth pydca (mf) pydca (plm) EVcouplings GREMLIN
code RFAM MSA TP time TP time TP time TP time

(L) (s) (L) (s) (L) (s) (L) (s)
2gdi 80 RF00059 12594 63.3 ∼7 69.2 ∼14 67.9 ∼22 64.6 ∼90
2gis 94 RF00162 6027 55.3 ∼5 52.1 ∼6 56.4 ∼10 48.9 ∼63
1y26 71 RF00167 2704 70.4 ∼3 70.4 ∼2 71.8 ∼3 67.6 ∼10
3owi 88 RF00504 4599 64.4 ∼4 55.2 ∼7 57.1 ∼9 52.3 ∼39
3irw 90 RF01051 4749 74.4 ∼4 75.6 ∼11 73.3 ∼11 80.0 ∼42
3vrs 52 RF01734 2139 44.2 ∼3 40.4 ∼1 50.0 ∼1 38.5 ∼2

Table 1: Comparison of method’s performances
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