000875084 001__ 875084
000875084 005__ 20210113100813.0
000875084 0247_ $$2doi$$a10.1016/j.compchemeng.2020.106851
000875084 0247_ $$2ISSN$$a0098-1354
000875084 0247_ $$2ISSN$$a1873-4375
000875084 0247_ $$2Handle$$a2128/24983
000875084 0247_ $$2WOS$$aWOS:000538049100009
000875084 037__ $$aFZJ-2020-01793
000875084 082__ $$a660
000875084 1001_ $$0P:(DE-Juel1)165710$$aHe, Qiao-Le$$b0
000875084 245__ $$aModel-based process design of a ternary protein separation using multi-step gradient ion-exchange SMB chromatography
000875084 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000875084 3367_ $$2DRIVER$$aarticle
000875084 3367_ $$2DataCite$$aOutput Types/Journal article
000875084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610473283_22196
000875084 3367_ $$2BibTeX$$aARTICLE
000875084 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875084 3367_ $$00$$2EndNote$$aJournal Article
000875084 520__ $$aModel-based process design of ion-exchange simulated moving bed (iex-smb) chromatography for center-cut separation of proteins is studied. Use of nonlinear binding models that describe more accurate adsorption behaviors of macro-molecules could make it impossible to utilize triangle theory to obtain operating parameters. Moreover, triangle theory provides no rules to design salt profiles in iex-smb. In the modeling study here, proteins (i.e., ribonuclease, cytochrome and lysozyme) on chromatographic columns packed with strong cation-exchanger SP Sepharose FF is used as an example system. The general rate model with steric mass-action kinetics was used; two closed-loop iex-smb network schemes were investigated (i.e., cascade and eight-zone schemes). Performance of the iex-smb schemes was examined with respect to multi-objective indicators (i.e., purity and yield) and productivity, and compared to a single column batch system with the same amount of resin utilized. A multi-objective sampling algorithm, Markov Chain Monte Carlo (mcmc), was used to generate samples for constructing Pareto optimal fronts. mcmc serves on the sampling purpose, which is interested in sampling the Pareto optimal points as well as those near Pareto optimal. Pareto fronts of the three schemes provide full information on the trade-off between the conflicting indicators, purity and yield here. The results indicate that the cascade iex-smb scheme and the integrated eight-zone iex-smb scheme have similar performance and that both outperforms the single column batch system.
000875084 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000875084 588__ $$aDataset connected to CrossRef
000875084 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b1$$ufzj
000875084 7001_ $$0P:(DE-Juel1)173771$$aSun, Zhaoxi$$b2
000875084 7001_ $$0P:(DE-HGF)0$$aZhao, Liming$$b3$$eCorresponding author
000875084 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2020.106851$$gp. 106851 -$$p106851$$tComputers & chemical engineering$$v138$$x0098-1354$$y2020
000875084 8564_ $$uhttps://juser.fz-juelich.de/record/875084/files/1910.05568.pdf$$yPublished on 2020-04-13. Available in OpenAccess from 2022-04-13.
000875084 8564_ $$uhttps://juser.fz-juelich.de/record/875084/files/1910.05568.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-04-13. Available in OpenAccess from 2022-04-13.
000875084 909CO $$ooai:juser.fz-juelich.de:875084$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000875084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b1$$kFZJ
000875084 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000875084 9141_ $$y2020
000875084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875084 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875084 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875084 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000875084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2017
000875084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875084 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875084 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875084 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875084 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875084 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875084 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000875084 980__ $$ajournal
000875084 980__ $$aVDB
000875084 980__ $$aI:(DE-Juel1)IBG-1-20101118
000875084 980__ $$aUNRESTRICTED
000875084 9801_ $$aFullTexts