000875091 001__ 875091
000875091 005__ 20230117113450.0
000875091 0247_ $$2doi$$a10.1002/vzj2.20020
000875091 0247_ $$2Handle$$a2128/24714
000875091 0247_ $$2altmetric$$aaltmetric:80417663
000875091 0247_ $$2WOS$$aWOS:000618773300020
000875091 037__ $$aFZJ-2020-01798
000875091 082__ $$a550
000875091 1001_ $$0P:(DE-Juel1)171347$$aHuang, Yafei$$b0$$eCorresponding author
000875091 245__ $$aEvaluation of different methods for gap filling of long‐term actual evapotranspiration time series measured by lysimeters
000875091 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2020
000875091 3367_ $$2DRIVER$$aarticle
000875091 3367_ $$2DataCite$$aOutput Types/Journal article
000875091 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1590648502_22825
000875091 3367_ $$2BibTeX$$aARTICLE
000875091 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875091 3367_ $$00$$2EndNote$$aJournal Article
000875091 520__ $$aTerrestrial evapotranspiration (ET) is the second largest water flux in the global water cycle. It can be measured with different techniques; weighable lysimeters can provide very accurate measurements, and some very long‐term time series exist. However, these lysimeter time series are affected by data gaps that must be filled to estimate actual ET totals and long‐term trends. In this paper, we explore four different gap‐filling methods: the potential ET‐method, the ratio method, the FAO‐based water balance method, and HYDRUS modeling. These gap‐filling methods were evaluated for three time series of actual ET measured by lysimeters and meteorological data of three European sites. Separate evaluations were made for the five driest and five wettest April–October periods to investigate whether the performance of the gap‐filling methods was affected by hydrological conditions. Series of random gaps were artificially created for the three time series, including gaps of four different lengths. Actual ET was estimated for these gaps with the gap‐filling methods, which were evaluated based on RMSE and mean bias error. The results show that the ratio method outperformed other methods for gap filling of lysimeter data for Basel (Switzerland), whereas the HYDRUS method outperformed other methods for Rheindahlen (Germany). For Rietholzbach (Switzerland), the different methods performed very similarly, except that the FAO method gives slightly larger RMSEs. The gap‐filling methods do not perform very differently for dry and wet conditions. The ratio method is recommended for filling smaller gaps, and the HYDRUS method is recommended for longer gaps of 30 d.
000875091 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000875091 588__ $$aDataset connected to CrossRef
000875091 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1$$ufzj
000875091 7001_ $$0P:(DE-Juel1)129469$$aHerbst, Michael$$b2
000875091 7001_ $$00000-0001-9154-756X$$aHirschi, Martin$$b3
000875091 7001_ $$0P:(DE-HGF)0$$aMichel, Dominik$$b4
000875091 7001_ $$0P:(DE-HGF)0$$aSeneviratne, Sonia I.$$b5
000875091 7001_ $$0P:(DE-HGF)0$$aTeuling, Adriaan J.$$b6
000875091 7001_ $$0P:(DE-HGF)0$$aVogt, Roland$$b7
000875091 7001_ $$0P:(DE-HGF)0$$aDetlef, Schumacher$$b8
000875091 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b9$$ufzj
000875091 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b10
000875091 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20020$$gVol. 19, no. 1$$n1$$p1-15$$tVadose zone journal$$v19$$x1539-1663$$y2020
000875091 8564_ $$uhttps://juser.fz-juelich.de/record/875091/files/Invoice_R-2020-00374.pdf
000875091 8564_ $$uhttps://juser.fz-juelich.de/record/875091/files/vzj2.20020.pdf$$yOpenAccess
000875091 8564_ $$uhttps://juser.fz-juelich.de/record/875091/files/vzj2.20020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875091 8564_ $$uhttps://juser.fz-juelich.de/record/875091/files/Invoice_R-2020-00374.pdf?subformat=pdfa$$xpdfa
000875091 8767_ $$8R-2020-00374$$92020-05-26$$d2020-05-29$$eAPC$$jDEAL$$lDEAL: Wiley$$pVZJ-2019-07-0080-TN.R1$$zBelegnr. 1200153579
000875091 909CO $$ooai:juser.fz-juelich.de:875091$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000875091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171347$$aForschungszentrum Jülich$$b0$$kFZJ
000875091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000875091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b2$$kFZJ
000875091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b9$$kFZJ
000875091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b10$$kFZJ
000875091 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000875091 9141_ $$y2020
000875091 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875091 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000875091 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000875091 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875091 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875091 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875091 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875091 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000875091 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875091 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875091 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000875091 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000875091 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000875091 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000875091 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000875091 980__ $$ajournal
000875091 980__ $$aVDB
000875091 980__ $$aI:(DE-Juel1)IBG-3-20101118
000875091 980__ $$aAPC
000875091 980__ $$aUNRESTRICTED
000875091 9801_ $$aAPC
000875091 9801_ $$aFullTexts