001     875091
005     20230117113450.0
024 7 _ |a 10.1002/vzj2.20020
|2 doi
024 7 _ |a 2128/24714
|2 Handle
024 7 _ |a altmetric:80417663
|2 altmetric
024 7 _ |a WOS:000618773300020
|2 WOS
037 _ _ |a FZJ-2020-01798
082 _ _ |a 550
100 1 _ |a Huang, Yafei
|0 P:(DE-Juel1)171347
|b 0
|e Corresponding author
245 _ _ |a Evaluation of different methods for gap filling of long‐term actual evapotranspiration time series measured by lysimeters
260 _ _ |a Alexandria, Va.
|c 2020
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1590648502_22825
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Terrestrial evapotranspiration (ET) is the second largest water flux in the global water cycle. It can be measured with different techniques; weighable lysimeters can provide very accurate measurements, and some very long‐term time series exist. However, these lysimeter time series are affected by data gaps that must be filled to estimate actual ET totals and long‐term trends. In this paper, we explore four different gap‐filling methods: the potential ET‐method, the ratio method, the FAO‐based water balance method, and HYDRUS modeling. These gap‐filling methods were evaluated for three time series of actual ET measured by lysimeters and meteorological data of three European sites. Separate evaluations were made for the five driest and five wettest April–October periods to investigate whether the performance of the gap‐filling methods was affected by hydrological conditions. Series of random gaps were artificially created for the three time series, including gaps of four different lengths. Actual ET was estimated for these gaps with the gap‐filling methods, which were evaluated based on RMSE and mean bias error. The results show that the ratio method outperformed other methods for gap filling of lysimeter data for Basel (Switzerland), whereas the HYDRUS method outperformed other methods for Rheindahlen (Germany). For Rietholzbach (Switzerland), the different methods performed very similarly, except that the FAO method gives slightly larger RMSEs. The gap‐filling methods do not perform very differently for dry and wet conditions. The ratio method is recommended for filling smaller gaps, and the HYDRUS method is recommended for longer gaps of 30 d.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
|u fzj
700 1 _ |a Herbst, Michael
|0 P:(DE-Juel1)129469
|b 2
700 1 _ |a Hirschi, Martin
|0 0000-0001-9154-756X
|b 3
700 1 _ |a Michel, Dominik
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Seneviratne, Sonia I.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Teuling, Adriaan J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vogt, Roland
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Detlef, Schumacher
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 9
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 10
773 _ _ |a 10.1002/vzj2.20020
|g Vol. 19, no. 1
|0 PERI:(DE-600)2088189-7
|n 1
|p 1-15
|t Vadose zone journal
|v 19
|y 2020
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/875091/files/Invoice_R-2020-00374.pdf
856 4 _ |u https://juser.fz-juelich.de/record/875091/files/vzj2.20020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875091/files/vzj2.20020.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/875091/files/Invoice_R-2020-00374.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:875091
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21