001     875100
005     20210130004846.0
024 7 _ |a 10.1007/s00259-020-04788-w
|2 doi
024 7 _ |a 0340-6997
|2 ISSN
024 7 _ |a 1432-105X
|2 ISSN
024 7 _ |a 1619-7070
|2 ISSN
024 7 _ |a 1619-7089
|2 ISSN
024 7 _ |a 2128/26026
|2 Handle
024 7 _ |a altmetric:80383611
|2 altmetric
024 7 _ |a pmid:32318783
|2 pmid
024 7 _ |a WOS:000528092500001
|2 WOS
037 _ _ |a FZJ-2020-01803
082 _ _ |a 610
100 1 _ |a Beyer, Leonie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury
260 _ _ |a Heidelberg [u.a.]
|c 2020
|b Springer-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604327619_29893
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeSecond-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several β-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG).MethodsTwenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer’s disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson’s disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0–60 min p.i.) and static [18F]FDG-PET (30–50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers.ResultsHighest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5–2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers.ConclusionEarly-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nitschmann, Alexander
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Barthel, Henryk
|0 P:(DE-HGF)0
|b 2
700 1 _ |a van Eimeren, Thilo
|0 P:(DE-Juel1)169110
|b 3
700 1 _ |a Unterrainer, Marcus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sauerbeck, Julia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Marek, Ken
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Song, Mengmeng
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Palleis, Carla
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Respondek, Gesine
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hammes, Jochen
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Barbe, Michael T.
|0 P:(DE-Juel1)131613
|b 11
700 1 _ |a Onur, Özgür
|0 P:(DE-Juel1)131736
|b 12
|u fzj
700 1 _ |a Jessen, Frank
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Saur, Dorothee
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Schroeter, Matthias L.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Rumpf, Jost-Julian
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rullmann, Michael
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Schildan, Andreas
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Patt, Marianne
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 20
|u fzj
700 1 _ |a Barret, Olivier
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Madonia, Jennifer
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Russell, David S.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Stephens, Andrew W.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Roeber, Sigrun
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Herms, Jochen
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Bötzel, Kai
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Levin, Johannes
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Classen, Joseph
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Höglinger, Günter U.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Bartenstein, Peter
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Villemagne, Victor
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 33
|u fzj
700 1 _ |a Seibyl, John
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Sabri, Osama
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Brendel, Matthias
|0 P:(DE-HGF)0
|b 36
|e Corresponding author
773 _ _ |a 10.1007/s00259-020-04788-w
|0 PERI:(DE-600)2098375-X
|p 2911–2922
|t European journal of nuclear medicine and molecular imaging
|v 47
|y 2020
|x 1619-7089
856 4 _ |u https://juser.fz-juelich.de/record/875100/files/Beyer2020_Article_Early-phase%5B18F%5DPI-2620Tau-PET.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:875100
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169110
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)169110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 33
|6 P:(DE-Juel1)177611
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J NUCL MED MOL I : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J NUCL MED MOL I : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 1
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21