| Hauptseite > Publikationsdatenbank > Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake > print |
| 001 | 875104 | ||
| 005 | 20220930130236.0 | ||
| 024 | 7 | _ | |a 10.3389/fpls.2020.00316 |2 doi |
| 024 | 7 | _ | |a 2128/24713 |2 Handle |
| 024 | 7 | _ | |a altmetric:77001921 |2 altmetric |
| 024 | 7 | _ | |a pmid:32296451 |2 pmid |
| 024 | 7 | _ | |a WOS:000526711800001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-01807 |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Schnepf, Andrea |0 P:(DE-Juel1)157922 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake |
| 260 | _ | _ | |a Lausanne |c 2020 |b Frontiers Media88991 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1587986796_20802 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development. |
| 536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
| 536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Black, Christopher K. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Couvreur, Valentin |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Delory, Benjamin M. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Doussan, Claude |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Koch, Axelle |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Koch, Timo |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Javaux, Mathieu |0 P:(DE-Juel1)129477 |b 7 |
| 700 | 1 | _ | |a Landl, Magdalena |0 P:(DE-Juel1)165987 |b 8 |
| 700 | 1 | _ | |a Leitner, Daniel |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Lobet, Guillaume |0 P:(DE-Juel1)171180 |b 10 |
| 700 | 1 | _ | |a Mai, Trung Hieu |0 P:(DE-Juel1)168562 |b 11 |
| 700 | 1 | _ | |a Meunier, Félicien |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Petrich, Lukas |0 P:(DE-HGF)0 |b 13 |
| 700 | 1 | _ | |a Postma, Johannes A. |0 P:(DE-Juel1)144879 |b 14 |
| 700 | 1 | _ | |a Priesack, Eckart |0 P:(DE-HGF)0 |b 15 |
| 700 | 1 | _ | |a Schmidt, Volker |0 P:(DE-HGF)0 |b 16 |
| 700 | 1 | _ | |a Vanderborght, Jan |0 P:(DE-Juel1)129548 |b 17 |
| 700 | 1 | _ | |a Vereecken, Harry |0 P:(DE-Juel1)129549 |b 18 |
| 700 | 1 | _ | |a Weber, Matthias |0 P:(DE-HGF)0 |b 19 |
| 773 | _ | _ | |a 10.3389/fpls.2020.00316 |g Vol. 11, p. 316 |0 PERI:(DE-600)2711035-7 |p 316 |t Frontiers in Functional Plant Ecology |v 11 |y 2020 |x 1664-462X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875104/files/2019-0219731-4.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875104/files/2019-0219731-4.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875104/files/fpls-11-00316.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/875104/files/fpls-11-00316.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:875104 |p openaire |p open_access |p OpenAPC |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157922 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129477 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)165987 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)171180 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)144879 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 17 |6 P:(DE-Juel1)129548 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 18 |6 P:(DE-Juel1)129549 |
| 913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Peer Review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|