000875135 001__ 875135
000875135 005__ 20210130004850.0
000875135 0247_ $$2doi$$a10.1002/adsc.202000058
000875135 0247_ $$2ISSN$$a0941-1216
000875135 0247_ $$2ISSN$$a1436-9966
000875135 0247_ $$2ISSN$$a1521-3897
000875135 0247_ $$2ISSN$$a1615-4150
000875135 0247_ $$2ISSN$$a1615-4169
000875135 0247_ $$2Handle$$a2128/25528
000875135 0247_ $$2altmetric$$aaltmetric:77079018
000875135 0247_ $$2WOS$$aWOS:000555591000012
000875135 037__ $$aFZJ-2020-01828
000875135 082__ $$a660
000875135 1001_ $$0P:(DE-Juel1)171992$$aBaumer, Benedikt$$b0$$ufzj
000875135 245__ $$aEfficient Nicotinamide Adenine Dinucleotide Phosphate [NADP(H)] Recycling in Closed‐Loop Continuous Flow Biocatalysis
000875135 260__ $$aWeinheim$$bWiley-VCH$$c2020
000875135 3367_ $$2DRIVER$$aarticle
000875135 3367_ $$2DataCite$$aOutput Types/Journal article
000875135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597735358_12926
000875135 3367_ $$2BibTeX$$aARTICLE
000875135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875135 3367_ $$00$$2EndNote$$aJournal Article
000875135 520__ $$aBiocatalytic redox reactions regularly depend on expensive cofactors that require recycling. For continuous conversions in flow chemistry, this is often an obstacle since the cofactor is washed away. Here, we present a quasi‐stationary recycling system for nicotinamide adenine dinucleotide phosphate utilizing an immobilized alcohol dehydrogenase. Four model substrates were reduced with high enantioselectivity as a proof of concept. The two‐phase system enables continuous production as well as quick substrate changes. This setup may serve as a general cofactor regeneration module for continuous biocatalytic devices employing (co‐)substrates being miscible in organic solvent. The system resulted in space‐time yields up to 117 g L−1 h−1 and total turnover numbers for nicotinamide adenine dinucleotide phosphate higher than 12,000 mol/mol are possible.
000875135 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000875135 588__ $$aDataset connected to CrossRef
000875135 7001_ $$0P:(DE-Juel1)128890$$aClassen, Thomas$$b1$$ufzj
000875135 7001_ $$0P:(DE-Juel1)131522$$aPohl, Martina$$b2$$ufzj
000875135 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b3$$eCorresponding author$$ufzj
000875135 773__ $$0PERI:(DE-600)2041384-1$$a10.1002/adsc.202000058$$gp. adsc.202000058$$n14$$p2894-2901$$tAdvanced synthesis & catalysis$$v362$$x1615-4169$$y2020
000875135 8564_ $$uhttps://juser.fz-juelich.de/record/875135/files/adsc.202000058.pdf$$yOpenAccess
000875135 8564_ $$uhttps://juser.fz-juelich.de/record/875135/files/adsc.202000058.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875135 909CO $$ooai:juser.fz-juelich.de:875135$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171992$$aForschungszentrum Jülich$$b0$$kFZJ
000875135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128890$$aForschungszentrum Jülich$$b1$$kFZJ
000875135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131522$$aForschungszentrum Jülich$$b2$$kFZJ
000875135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b3$$kFZJ
000875135 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000875135 9141_ $$y2020
000875135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875135 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875135 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV SYNTH CATAL : 2017
000875135 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV SYNTH CATAL : 2017
000875135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875135 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875135 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875135 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875135 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875135 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875135 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875135 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000875135 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x1
000875135 980__ $$ajournal
000875135 980__ $$aVDB
000875135 980__ $$aUNRESTRICTED
000875135 980__ $$aI:(DE-Juel1)IBG-1-20101118
000875135 980__ $$aI:(DE-Juel1)IBOC-20090406
000875135 9801_ $$aFullTexts