TY  - JOUR
AU  - Asante-Asamani, E. O.
AU  - Kleefeld, A.
AU  - Wade, B. A.
TI  - A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting
JO  - Journal of computational physics
VL  - 415
SN  - 0021-9991
CY  - Amsterdam
PB  - Elsevier
M1  - FZJ-2020-01857
SP  - 109490
PY  - 2020
AB  - A second-order L-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000538393900009
DO  - DOI:10.1016/j.jcp.2020.109490
UR  - https://juser.fz-juelich.de/record/875175
ER  -