TY - JOUR
AU - Asante-Asamani, E. O.
AU - Kleefeld, A.
AU - Wade, B. A.
TI - A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting
JO - Journal of computational physics
VL - 415
SN - 0021-9991
CY - Amsterdam
PB - Elsevier
M1 - FZJ-2020-01857
SP - 109490
PY - 2020
AB - A second-order L-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000538393900009
DO - DOI:10.1016/j.jcp.2020.109490
UR - https://juser.fz-juelich.de/record/875175
ER -