Hauptseite > Publikationsdatenbank > Dynamics of sun‐induced chlorophyll fluorescence and reflectance to detect stress‐induced variations in canopy photosynthesis > print |
001 | 875190 | ||
005 | 20220930130236.0 | ||
024 | 7 | _ | |a 10.1111/pce.13754 |2 doi |
024 | 7 | _ | |a 0140-7791 |2 ISSN |
024 | 7 | _ | |a 1365-3040 |2 ISSN |
024 | 7 | _ | |a 2128/25211 |2 Handle |
024 | 7 | _ | |a altmetric:77529126 |2 altmetric |
024 | 7 | _ | |a pmid:32167577 |2 pmid |
024 | 7 | _ | |a WOS:000529868600001 |2 WOS |
037 | _ | _ | |a FZJ-2020-01860 |
041 | _ | _ | |a English |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Pinto, Francisco |0 P:(DE-Juel1)138884 |b 0 |e Corresponding author |
245 | _ | _ | |a Dynamics of sun‐induced chlorophyll fluorescence and reflectance to detect stress‐induced variations in canopy photosynthesis |
260 | _ | _ | |a Oxford [u.a.] |c 2020 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1593609581_10252 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Passive measurement of sun‐induced chlorophyll fluorescence (F) represents the most promising tool to quantify changes in photosynthetic functioning on a large scale. However, the complex relationship between this signal and other photosynthesis‐related processes restricts its interpretation under stress conditions. To address this issue, we conducted a field campaign by combining daily airborne and ground‐based measurements of F (normalized to photosynthetically active radiation), reflectance and surface temperature and related the observed changes to stress‐induced variations in photosynthesis. A lawn carpet was sprayed with different doses of the herbicide Dicuran. Canopy‐level measurements of gross primary productivity indicated dosage‐dependent inhibition of photosynthesis by the herbicide. Dosage‐dependent changes in normalized F were also detected. After spraying, we first observed a rapid increase in normalized F and in the Photochemical Reflectance Index, possibly due to the blockage of electron transport by Dicuran and the resultant impairment of xanthophyll‐mediated non‐photochemical quenching. This initial increase was followed by a gradual decrease in both signals, which coincided with a decline in pigment‐related reflectance indices. In parallel, we also detected a canopy temperature increase after the treatment. These results demonstrate the potential of using F coupled with relevant reflectance indices to estimate stress‐induced changes in canopy photosynthesis. |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Celesti, Marco |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Acebron, Kelvin |0 P:(DE-Juel1)171722 |b 2 |u fzj |
700 | 1 | _ | |a Alberti, Giorgio |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Cogliati, Sergio |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Colombo, Roberto |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Juszczak, Radosław |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Matsubara, Shizue |0 P:(DE-Juel1)129358 |b 7 |u fzj |
700 | 1 | _ | |a Miglietta, Franco |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Palombo, Angelo |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Panigada, Cinzia |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Pignatti, Stefano |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Rossini, Micol |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Sakowska, Karolina |0 0000-0003-4186-2558 |b 13 |
700 | 1 | _ | |a Schickling, Anke |0 P:(DE-Juel1)7338 |b 14 |
700 | 1 | _ | |a Schüttemeyer, Dirk |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Stróżecki, Marcin |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Tudoroiu, Marin |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 18 |u fzj |
773 | _ | _ | |a 10.1111/pce.13754 |g p. pce.13754 |0 PERI:(DE-600)2020843-1 |n 7 |p 1637-1654 |t Plant, cell & environment |v 43 |y 2020 |x 1365-3040 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/875190/files/pce.13754%281%29.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/875190/files/pce.13754%281%29.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:875190 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)138884 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171722 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129358 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)7338 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 18 |6 P:(DE-Juel1)129388 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT CELL ENVIRON : 2017 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT CELL ENVIRON : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|