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Index, possibly due to the blockage of electron transport by Dicuran and the resultant

impairment of xanthophyll-mediated non-photochemical quenching. This initial

increase was followed by a gradual decrease in both signals, which coincided with a

decline in pigment-related reflectance indices. In parallel, we also detected a canopy

temperature increase after the treatment. These results demonstrate the potential of

using F coupled with relevant reflectance indices to estimate stress-induced changes

in canopy photosynthesis.
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1 | INTRODUCTION

Photosynthesis is a highly regulated process that dynamically adapts

in order to optimize the use of light while avoiding damage to the

photosynthetic apparatus. The quantification of these dynamics is of

utmost importance for understanding the responses of photosynthe-

sis to changes in environmental conditions. However, measuring these

fluctuations is difficult. They occur at different spatio-temporal scales

and they do not necessarily involve changes in the biochemical and

biophysical properties of the vegetation. Recently, the passive detec-

tion of sun-induced chlorophyll fluorescence (F) has been proposed as

an approach with a potential to detect dynamics of photosynthesis

(Pinto et al., 2016; Rascher et al., 2015; Rossini et al., 2015). Further-

more, the possibility to retrieve F from remote sensing platforms pro-

vides new opportunities to assess plant photosynthetic functioning at

different temporal and spatial scales (Mohammed et al., 2019).

Together with photochemistry and non-photochemical quenching

(NPQ), the fluorescence emission is one of the pathways that the exci-

tation energy absorbed by the photosystems can follow. While the

NPQ components are physiologically regulated, the emission of fluo-

rescence is merely a physical process that is triggered by an excess of

energy in the light harvest complex. Since these three pathways com-

pete for the same excitation energy, the emission of fluorescence can

provide information on the status of photochemistry and NPQ

(Porcar-Castell et al., 2014). Characterized by two emission peaks cen-

tered around 690 and 740 nm, the fluorescence signal is emitted by

the chlorophyll a molecules in the chloroplasts of higher plants under

the prevailing light conditions. At leaf scale, actively induced fluores-

cence has been used for decades to obtain information on plant pho-

tosynthetic activity, helping to elucidate many important features of

this process (Papageorgiou & Govindjee, 2004). However, this method

is impractical for measurements at the canopy or on larger scales.

Through high spectral resolution radiance measurement of the vege-

tation, the Fraunhofer Line Depth principle (FLD) allows the passive

retrieval of fluorescence that arises from the absorption of solar radia-

tion by chlorophylls under natural conditions. This approach opens

new perspectives for measuring fluorescence in a wide range of

spatio-temporal scales (Meroni et al., 2009). In the last few years,

several studies have demonstrated the feasibility of measuring

red (FR) and far-red fluorescence (FFR) from ground platforms

(Celesti et al., 2018; Cogliati et al., 2015; Daumard et al., 2010; Mag-

ney et al., 2019; Pinto et al., 2016; Rossini et al., 2010, 2016; Zhao

et al., 2018), airborne platforms (Bandopadhyay et al., 2019; Damm

et al., 2014; Rascher et al., 2015; Rossini et al., 2015) and satellite

platforms (Frankenberg, Fisher, et al. 2011; Frankenberg, Butz &

Toon 2011; Guanter et al., 2012; Joiner et al., 2011; Joiner, Yoshida,

Guanter, & Middleton, 2016). Furthermore, the Fluorescence Explorer

(FLEX) mission of the European Spatial Agency will be launched in the

near future as the first satellite mission that is specifically intended for

fluorescence retrieval from space (Drusch et al., 2017).

The primary interest of the scientific community in the F signal

has been its potential for improving remote estimations of gross pri-

mary productivity (GPP; Byrne et al., 2018; Guanter et al., 2014;

Lee et al., 2013; Perez-Priego et al., 2015; Rossini et al., 2010;

Schickling et al., 2016; Wieneke et al., 2016, 2018; ). Nevertheless,

the possibility of using remotely sensed F for early detection of stress

is also gaining significant attention (e.g., Meroni et al., 2008; Rossini

et al., 2015; Song et al., 2018; Xu, Liu, Zhao, Zhao, & Ren, 2018;

Zarco-Tejada et al., 2018). Stress events are associated with a reduc-

tion in the actual photosynthetic activity of plants, therefore changes

in the fluorescence emission are expected to occur before any notice-

able effect on leaf reflectance. However, the concurrent operation of

the two main de-excitation pathways, that is, the NPQ and photo-

chemistry, complicates the interpretation of the F signal in response

to stress. There is no universal relationship between photochemistry

and F, meaning that F can either increase or decrease depending on

the nature of the stressor and the physiological status of the plants

(Porcar-Castell et al., 2014). Ač et al. (2015) performed a meta-analysis

of the response of FR and FFR to different stressors (i.e., temperature,

water and nitrogen availability) and observed consistent stressor-

specific patterns in F values. Recently, Rossini et al. (2015) treated a

grass carpet with the DCMU herbicide and demonstrated the feasibil-

ity of mapping the two peaks of the chlorophyll fluorescence spec-

trum from airborne high-resolution radiance spectra. They observed

that the variation in the fluorescence signal was linked to herbicide-

induced variations in the actual photosynthetic efficiency. Further
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development of a mechanistic understanding of the link between

F and photosynthetic activity under stress conditions requires dis-

entangling the effects from all factors that influence this relationship.

Therefore, ancillary information on the NPQ activity and other rele-

vant physiological and physicochemical variables, such as stomatal

conductance or pigment composition, must be considered for a proper

interpretation of F (Alonso et al., 2017; Mohammed et al., 2019;

Porcar-Castell et al., 2014; Wohlfahrt et al., 2018). This physiological

information can potentially be derived from remote sensing measure-

ments as described in the following.

Numerous spectral vegetation indices have been proposed for

remote quantification of leaf pigments. In particular, indices using

spectral bands in the red and red-edge regions have proved to be sen-

sitive to variations in chlorophyll content in leaves. Such indices

include the Normalized Difference Vegetation Index (NDVI; Rouse,

Haas, Schell, & Deering, 1974), the Meris Terrestrial Chlorophyll Index

(MTCI; Dash & Curran, 2004) and the Transformed Chlorophyll

Absorption in Reflectance Index (Haboudane, Miller, Tremblay, Zarco-

Tejada, & Dextraze, 2002). Another technique providing relevant

physiological information is thermography. Measurements of canopy

temperature have been widely used for remote assessments of stoma-

tal conductance and evapotranspiration (Berni, Zarco-Tejada, Suarez, &

Fereres, 2009; Fuentes, De Bei, Pech, & Tyerman, 2012; Li, Zhou,

et al. 2013; Panigada et al., 2014; Zarco-Tejada, González-Dugo, &

Berni, 2012). On the other hand, the remote quantification of NPQ is

particularly challenging. Gamon, Peñuelas, and Field (1992) formulated

the Photochemical Reflectance Index (PRI) after observing that the

de-epoxidation of violaxanthin to zeaxanthin – a process directly

involved in NPQ – causes changes in the leaf reflectance at 531 nm.

Strong correlations have been found between PRI and NPQ at leaf

and canopy level (e.g., Filella et al., 2009; Filella, Amaro, Araus, &

Peñuelas, 1996; Garbulsky, Peñuelas, Gamon, Inoue, & Filella, 2011;

Porcar-Castell et al., 2012). However, measurements of PRI at larger

vegetation scales can be constrained by the confounding effect of the

canopy architecture, sun-target-sensor geometry and background

properties (e.g., Garbulsky et al., 2011; Porcar-Castell et al., 2012).

Moreover, the temporal relationship between PRI and NPQ might be

affected by chlorophyll to carotenoid pigment pool size seasonal

dynamics (Gitelson, Gamon, & Solovchenko, 2017).

Many studies have used F and other remotely sensed optical indi-

ces to successfully detect abiotic or biotic stress (Calderón, Navas-

Cortés, Lucena, & Zarco-Tejada, 2013; Calderón, Navas-Cortés, &

Zarco-Tejada, 2015; Daumard et al., 2010; Hernández-Clemente,

North, Hornero, & Zarco-Tejada, 2017; Panigada et al., 2014; Perez-

Priego et al., 2015; Rossini et al., 2015; Song et al., 2018; Wieneke

et al., 2016; Xu et al., 2018; Yang et al., 2019; Zarco-Tejada

et al., 2012, 2018). However, very seldom these studies use this com-

bination to understand the interplay between the dynamics of F and

of different physiological and structural plant traits under stress condi-

tions. Xu et al. (2018) demonstrated that ground-based measurements

of PRI and canopy temperature are good indicators of diurnal changes

in NPQ and in stomata closure, respectively, and together they can be

used to explain diurnal changes in FR and FFR in maize plants subjected

to water stress. Perez-Priego et al. (2015) provided new insights

regarding the value of F and PRI for the estimation of nutrient-

induced GPP differences in grassland. Unfortunately, these efforts are

not sufficient to build a complete understanding on how different fac-

tors may affect the dynamics of F under a specific stress. To improve

this aspect, further and more robust field studies under different

stress conditions are necessary, where optical indices are validated for

tracking changes in physiological and structural properties of the veg-

etation and used to explain dynamics of F, and where actual measure-

ments of photosynthesis are conducted for validation.

The main objective of this study was to explore the potential of

passive measurements of F for detecting stress-induced changes in

photosynthetic efficiency at a canopy level over the course of several

days after herbicide application. Additionally, we assessed whether

canopy temperature, PRI and pigment-related spectral indices could

assist with the interpretation of the F signal. To induce different levels

of stress, we treated plots of homogeneous grass with different doses

of Dicuran, an inhibitor of photosynthetic electron transport. A multi-

disciplinary team conducted concurrent remote-sensing and ground

truth measurements of several variables related to photosynthesis

regulation under stress conditions. Following the herbicide treat-

ments, a time series of high spectral resolution top of the canopy

(TOC) radiance measurements were obtained using airborne and field

sensors for the estimation of F. Both airborne measurements of the

TOC reflectance and F were validated against the ground-based mea-

surements. Complementary measurements of surface temperature

were conducted using an airborne hyperspectral thermal camera. Con-

currently, CO2 assimilation at canopy level and leaf chlorophyll con-

tent were also analyzed to validate the remote sensing assessment of

photosynthetic activity. The temporal dynamics of fluorescence, PRI,

surface temperature and chlorophyll content are discussed in relation

to the action of the inhibitor. The interaction between these variables

is further interpreted in order to define a mechanistic understanding

of the stress-induced changes in sun-induced chlorophyll fluores-

cence. This article offers highly valuable information for the future

interpretation of the data that will be collected by the FLEX/Sentinel

3 Tandem Mission for Photosynthesis Study and by other future satel-

lite missions capable of monitoring similar variables as those measured

in this study.

2 | MATERIALS AND METHODS

2.1 | Study site and experiment design

The experiment took place from June 11 to June 24, 2014, over a

homogenous commercial turf grass (Festuca arundinacea Schreb. and

Poa pratensis L.) grown in a farm in Latisana, Italy (Lat: 45.7784� N,

Lon: 13.0133� E). In order to inhibit the photosynthetic electron trans-

port, the plants were treated with Dicuran 700 FW (Syngenta AG)

which is a commercial formulation of Chlortoluron (3-[3-chloro-p-

tolyl]-1, 1-dimethylurea). This herbicide inhibits photosynthesis

through the same mechanism of action as the herbicide DCMU
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(Weed Science Society of America, 2020). The DCMU has been

widely used in photosynthesis and chlorophyll fluorescence studies

because it enhances the fluorescence emission by blocking the elec-

tron transport in photosystem II (Carter, Jones, Mitchell, &

Brewer, 1996; Lichtenthaler & Rinderle, 1988; Schreiber, 1986). The

DCMU displaces the plastoquinone (PQ) at the QB binding site on the

D1 protein of photosystem II reaction center and thereby blocks elec-

tron flow from QA to QB. Three plots of 12 x 12 m2 were sprayed

using a backpack sprayer containing different concentrations of Dic-

uran: 24 mL/L (plot D24), 6 mL/L (plot D6) and 1.5 mL/L (plot D1.5).

Each plot was sprayed with 15 L of herbicide solution. Owing to logis-

tic constraints, the plots were sprayed on two different dates. Plot

D24 was treated in the morning of June 12, whereas plots D6 and

D1.5 were sprayed on June 19. On each application date, a control

plot was sprayed with water, which helped to account for the differ-

ences in weather and vegetation conditions between the treatments.

While Control 1 was compared with plot D24, Control 2 was used

with plots D1.5 and D6. A first set of aerial and ground-based spectral

measurements were conducted at each plot before the application of

the herbicide, whereas the first post-treatment measurements were

performed approximately 3 hr after spraying the plants. Successive

measurements were conducted around midday over a period of sev-

eral days (for details see Table 1). In order to facilitate the comparison

of temporal trends between the treatments, all results were expressed

in terms of days after treatment. A map of experiment site and plot

locations are presented in Figure 1. Both spraying and measurements

were conducted under clear sky conditions.

2.2 | Aerial hyperspectral and thermal

measurements

Aerial hyperspectral images were collected using the HyPlant airborne

sensor (Specim, Finland) which was mounted on a Cessna 208 Caravan

aircraft. HyPlant is a hyperspectral imager that consists of two push

broom modules: the DUAL Channel Imager providing continuous

spectral information from 370 to 2,500 nm (full width at half maxi-

mum [FWHM]: 3 nm in the visible/near-infrared and 10 nm in short-

wave infrared spectral regions), and the Fluorescence Imager (FLUO)

which produces data at high spectral resolution (FWHM: 0.25 nm)

between 670 and 780 nm. Both imagers were mounted on the same

platform, enabling the alignment of their field of view (for details see

Rascher et al., 2015). The hyperspectral images were recorded from

an altitude of 680 m above ground level resulting in a ground sam-

pling distance of 1 m per pixel in both imagers. The measurements

were performed around solar noon (±2 hr) over the course of a total

of 13 days (Table 1). The images from the DUAL module were used to

compute spectral reflectance and vegetation indices, while the images

from the FLUO module were used for the estimation of F.

The DUAL images were radiometrically calibrated and

georectified using the CaliGeo toolbox (SPECIM, Finland), and the

Atmospheric and Topographic Correction model (ATCOR, ReSe Appli-

cations Schläpfer) was used to estimate the surface spectral reflec-

tance from these images. Three 9 x 9 m2 calibration tarps (i.e., white,

grey and black) were used to perform an in-flight radiometric calibra-

tion of the DUAL images. The tarps were located next to each other

TABLE 1 List of airborne data collected over the experimental

site. DOY refers to day of the year

Date

DOY

(2014)

Time (UTC + 2) of

HyPlant data collection

Time (UTC + 2) of

TASI data collection

11-June 162 14:52 14:51

12-June 163 13:40 14:23

13-June 164 13:52 14:09

17-June 168 – 10:17

18-June 169 – 13:20

19-June 170 13:34 11:27

21-June 172 12:57 14:27

22-June 173 12:10 –

24-June 175 11:56 –

F IGURE 1 Map of the

experimental site in Latisana,

(northern Italy) and the

description of the experimental

plots [Colour figure can be

viewed at wileyonlinelibrary.com]
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in a parking lot located 800 m away from the experimental site, which

enabled almost simultaneous ground and aerial measurements of

spectral radiance of tarps during each flight line. The tarps spectral

reflectance was characterized at each flight through ground-based

measurements using a Fieldspec Full Resolution spectroradiometer

(Analytical Spectral Devices, Inc., ASD). Twenty measurements were

taken over each tarp to account for their spatial variability. A white

reference panel (99% Spectralon®, Labsphere, Inc., NH) mounted on

a leveled tripod was used to estimate the downwelling radiation

needed for the calculation of the spectral reflectance of the tarps.

The results of the atmospheric correction were evaluated by com-

puting the root mean square error (RMSE) between the atmospheri-

cally corrected data collected with the DUAL module and ground

spectra acquired over the tarps. The average RMSE from all wave-

lengths, calculated using data from all three tarps and all measure-

ment dates, was 0.011, indicating a reliable atmospheric correction

(Figure S3).

Three vegetation indices related to pigment concentration and

photosynthetic activity were calculated from the DUAL module

data: NDVI, MTCI and the PRI (Gamon et al., 1992). For validation,

these indices were also estimated from ground level measurements

performed as close in time as possible to the airborne sensor over-

passes (see Section 2.4). To calculate broadband vegetation indices

(i.e., NDVI and MTCI), several bands within each spectral region

were averaged to reduce the noise. Table 2 describes the spectral

bands used for the calculation of these indices from both

platforms.

The images from the FLUO module were radiometrically cali-

brated and corrected for the point spread function using a sensor

characterization and an algorithm developed in-house. Subsequently,

the images were georectified using CaliGeo toolbox (SPECIM, Finland)

and then used to retrieve fluorescence using the method described in

the following section.

Multispectral thermal images were collected using the TASI-600

sensor (ITRES Research Ltd., Calgary, Canada), which is a push broom

sensor with 32 spectral bands in the long-wave infrared (8.0–11.5 μm)

spectral range. The sensor has a field of view of 40� and FWHM of

0.1095 μm (for details see Pignatti et al., 2011). The TASI-600 data

were collected from the afternoon of June 11 until June 21, from an

altitude of 900 m above ground level, yielding a ground sample dis-

tance of 1 m. The date and time of thermal data acquisition are shown

in Table 1.

2.3 | Airborne retrieval of sun-induced chlorophyll

fluorescence

The fluorescence emitted by the vegetation can be decoupled from

the reflected radiation using the FLD principle. In essence, FLD-based

approaches exploit the atmosphere absorption bands, where the

background solar radiation is strongly diminished and the relative con-

tribution of the fluorescence to the overall vegetation radiance

increases (Maier, Günther, & Stellmes, 2003; Meroni et al., 2009;

Plascyk, 1975). In this study, we used the improved version of the

FLD method (iFLD) proposed by Alonso et al. (2008) to estimate fluo-

rescence in the O2-A (i.e., at 760 nm; F760) and O2-B (i.e., at 687 nm;

F687) absorption bands.

The iFLD method estimates the fluorescence by building a system

of equations where the at-sensor radiance is modeled at two different

wavelengths: inside (i) and outside (o) the absorption band. Following

Damm et al. (2015), the radiance measured by an airborne sen-

sor LAtS(LAtS) at a specific wavelength ( j) over the vegetation can

be described by:

LAtSj =
Eoj cosθil

D E

π
ρjso
� �

+
τjssτ

j
oo

� �

+ τ
j
sdτ

j
oo

D E

+ τjssτ
j
do

D E

+ τ
j
sdτ

j
do

D E� �

Rj

1−Rj ρ
j
dd

D E

2

4

3

5

+
Fj τjoo

� �

+ τ
j
do

D E� �

1−Rj ρ
j
dd

D E , j = i,o ð1Þ

where Eo is the extraterrestrial solar irradiance, θil is the illumina-

tion zenith angle, ρso is the path reflectance of the atmosphere,

and ρdd is the spherical albedo of the atmosphere. The terms τss

and τsd are the direct and diffuse transmittance of the atmosphere

for sunlight, whereas τoo and τdo represent the direct and

hemispherical-directional transmittance in the view direction,

respectively. Assuming that the irradiance and the fluorescence

emission (F) are isotropic, and that the surface reflectance of the

vegetation (R) has Lambertian behavior, the atmospheric parame-

ters described above (i.e., Eo, ρso, ρdd, τss, τsd, τoo and τdo) can be

estimated using the radiative transfer model MODTRAN according

to Damm et al. (2015). At this point, only four variables are

unknown in the system of equations: the reflectance and the fluo-

rescence inside and outside the absorption band (Ri, Ro, Fi and Fo).

Assuming that both reflectance and fluorescence vary linearly

between the outside and the inside of the absorption band, the

iFLD method relates Ri with Ro and Fi with Fo through the coeffi-

cient A and B, respectively:

TABLE 2 Vegetation indices calculated from airborne (HyPlant

DUAL) and ground-based (ASD) data

Index Formulation

NDVI
RNIR−RREDð Þ
RNIR +RREDð Þ

MTCI
RNIR−RRED−EDGEð Þ
RRED−EDGE −RREDð Þ

PRI R530:5−R569:9

R530:5 +R569:9

Abbreviations: MTCI, Meris Terrestrial Chlorophyll Index; NDVI, Normal-

ized Difference Vegetation Index; PRI, Photochemical Reflectance Index;

R, reflectance.

NDVI: RNIR, average reflectance between 795 and 809 nm; RRED, average

reflectance between 664 nm and 678 nm.

MTCI: RNIR, average reflectance between 747 and 761 nm; RRED, average

reflectance between 673 and 687 nm; RRED-EDGE, average reflectance

between 700 and 718 nm.
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Ro =ARi

Fo τooo
� �
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=BFi τioo
� �

+ τido
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)

ð2Þ

With A and B estimated according to Alonso et al. (2008), the

fluorescence inside the O2-A and O2-B bands can be calculated using

(1) and (2) as:

Fi =
AXi Eo +Xo ρodd
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−Xo Ei +Xi ρ
i
dd

� �� �

A Eo +Xo ρodd
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The atmospheric parameters were simulated at the highest spec-

tral resolution assuming middle latitude summer atmospheric condi-

tions, maritime aerosol model and the default visibility of ATCOR

(i.e., 23 km). Next, they were spectrally resampled to meet our sensor

configuration taking into account the across-track spectral shift and

FWHM. It is worth noting that for parts of Equations (1–4) enclosed

in angle brackets, the parameters were first multiplied at their highest

resolution and then their product was convolved to meet our sensor

configuration. This approach was necessary to compensate for the

strong modulation of these parameters by the absorption bands and

their strong correlation over finite spectral intervals, both of which

result in a direct violation of Beer's law (Damm et al., 2015).

The use of standard atmospheric conditions can lead to inaccu-

rate estimations of some atmospheric parameters that have a great

impact on the final fluorescence values. Two empirical corrections

were implemented to improve the accuracy of the fluorescence esti-

mation. The first one aimed at obtaining a better estimation of the

path reflectance of the atmosphere. For a non-fluorescent target,

Equation (1) can be simplified to a two-variable linear equation:

LAtSj =
Eoj cosθil

D E
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where LAtSj and Rj represent the dependent and independent variables,

respectively. In cases of two or more non-fluorescent surfaces sub-

jected to the same illumination conditions, it can be assumed that the

values of different atmospheric parameters are the same. If the Rj and

LAtSj of each of these non-fluorescence targets are known, and assum-

ing a linear sensor response, a linear regression can be performed to

estimate the constants in Equation (6), and therefore to adjust the

value of ρjsoE
o
j cosθil ρ

j
so:(Eoj and cosθil are known since they depend on

the date and the time of the day and not on the atmospheric condi-

tions.) The calibration tarps were used for this purpose. The ρjso esti-

mated from the tarp measurements was assumed to be constant

within the entire scene. A second empirical correction was applied

using the effective transmittance correction (ETC) method (Damm

et al., 2014; Guanter, 2007) in order to compensate for further inaccu-

racies and uncertainties in the atmospheric and sensor characteriza-

tion. In this approach, values of τioo were adjusted across-track using a

simple correction coefficient that is calculated from pixels that are

known to be non-fluorescent surfaces (e.g., bare soil). Non-fluorescent

pixels were detected calculating a normalized difference index using

the radiance in the red and near-infrared regions. Pixels with a value

below 0.15 were considered as non-vegetation surfaces. Shaded sur-

faces were discarded from the analysis (for details on the ETC imple-

mentation see Pinto et al., 2016).

Since the primary driver of fluorescence emission at canopy level

is the incoming radiation, it was necessary to exclude the effects

attributed to the natural variations of the incoming radiation from the

herbicide treatments effects. Therefore, the fluorescence values were

normalized by PAR as follows: Fy* = F/PAR (Rossini et al., 2010), for

both the fluorescence at 687 nm (Fy*687) and at 760 nm (Fy*760).

2.4 | Ground-based spectroscopy

Downwelling and upwelling radiances were measured over the experi-

mental plots with three portable spectrometers (OceanOptics, Dune-

din, FL) operating in the visible and near-infrared regions (Table 3).

The spectrometers were housed in a Peltier thermally regulated box

(model NT-16, Magapor, Zaragoza, Spain) keeping the internal tem-

perature at 25�C in order to ensure the stability of both the intensity

and the spectral information of the measured signal (Meroni &

Colombo, 2009). The bare optical fibers (field of view of 25�) attached

to the spectrometers were placed at a height of 130 cm above the

TOC looking in nadir direction resulting in a measured circular surface

of 58 cm diameter. A modified tripod enabled measurements to alter-

nate between a calibrated white reference panel (Labsphere, Inc.,

North Sutton, NH) and the vegetation (for further details see Rossini

TABLE 3 Summary of the characteristics of the spectrometers

used in the study: ‘Range’ is the spectral range, ‘SSI’ is the spectral

sampling interval, ‘FWHM’ is the full width at half maximum and ‘SNR’

is the nominal signal to noise ratio

Spectrometer Range (nm) SSI (nm) FWHM (nm) SNR

HR4000 400–1,000 0.24 1.00 300:1

QE6500 657–740 0.06 0.25 1,000:1

HR4000 700–800 0.02 0.10 300:1
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et al., 2016). The readings over the white panel were used to estimate

the downwelling radiation (see Figure S1).

Ground-based spectral data were acquired close to solar noon in

order to match the airborne data. Each measurement consisted of

three spectral readings recorded sequentially over the white panel,

the vegetation and the white panel again. Each of these spectra repre-

sented the average of 10 and 3 scans (for the full range and the other

two higher resolution spectrometers, respectively) in order to reduce

instrumental noise. The number of scans is different because the

spectrometers differ in their integration time. The relative variation

between the two measurements over the white panel was used as a

quality check for the illumination condition stability. Dark current

measurements were systematically recorded to eliminate instrument

noise from the data. The data were recorded using the dedicated 3S

software (Meroni & Colombo, 2009). Five consecutive measurements

under stable illumination conditions were taken for each plot.

Ground reflectance measurements acquired in the visible and

near-infrared regions were used to compute the vegetation indices

indicated in Table 2. The fluorescence was estimated in the red and

far-red region (F687 and F760) using the spectral fitting method, origi-

nally presented by Meroni and Colombo (2006) and recently updated

by Cogliati et al. (2015b). The spectral interval used for F760 estima-

tion was set from 759.00 to 767.76 nm (i.e., 439 spectral channels),

while the spectral range between 684 and 696 nm (i.e., 200 spectral

channels) was used for estimating the F687.

2.5 | Canopy gas exchange chamber

measurements

The non-steady-state flow-through chamber system was used to esti-

mate CO2 and H2O exchange in the plots. The net ecosystem

exchange (NEE) and the ecosystem respiration (Reco) were derived

directly from measurements using a transparent and an opaque cham-

ber, respectively (chamber's dimension: 0.78 x 0.78 x 0.50 m3). Cham-

bers were equipped with a set of air-mixing fans, a temperature

sensor (T-107, Campbell Scientific) and a vent to maintain pressure

equilibrium between the chamber and the ambient air in accordance

with Juszczak et al. (2013). In addition, a PAR quantum sensor

(SKP215, Skye Instruments, UK) was installed on top of the transpar-

ent chamber. No cooling system was used in order to avoid biasing

H2O fluxes. Gas concentration changes in the chambers were mea-

sured with the LI-840 infrared gas analyzer (Li-COR, Lincoln, NE)

housed in a portable control box (for details see Juszczak, Uździcka,

Stró _zecki, & Sakowska, 2018). During measurements, chambers were

fixed to the soil frames (one per experimental plot) inserted into the

soil on June 5. The closure time of the transparent chamber was no

longer than 1 min to avoid overheating of the chamber headspace and

2 min for the opaque chamber.

The measured CO2 concentrations were corrected for water dilu-

tion in accordance with Perez-Priego et al. (2015). CO2 and H2O

fluxes were calculated based on gas concentration changes over the

closure time using the linear regression type as described in Juszczak

et al. (2013). Fluxes were calculated based on the first 30–40 s of

measurements, corresponding to the highest regression slopes, in

order to avoid underestimation of the fluxes due factors such as gas

saturation, in accordance with Hoffmann et al. (2015). Due to a very

small proportion of chamber volume occupied by plants (Figure S2),

the reduction in the effective chamber volume was considered negligi-

ble and plant volume was not incorporated into flux calculations.

The NEE measurements were taken just after reflectance and

fluorescence measurements on the same plots and followed by Reco

measurements. The amount of CO2 assimilated by plant photosynthe-

sis (i.e., GPP) was calculated as the difference between consecutively

measured NEE and Reco. The light use efficiency was calculated as the

ratio between GPP and PAR. Only measurements taken around solar

noon (±1.5 hr) were used to calculate mean midday values and were

analyzed in this study.

2.6 | Airborne retrieval of surface temperature

Thermal images were geometrically and radiometrically corrected with

the GEOCORR and the RADCORR software (ITRES Research Ltd.,

Calgary, Canada). An additional code developed by the Italian National

Research Council (CNR IMAA) was used to remove blinking pixels

(Santini et al., 2014). The atmospheric correction of spectral radiances

was executed by applying the in-scene atmospheric compensation

(ISAC) algorithm (Young, 1998). This procedure was chosen as it is

commonly used for in-scene atmospheric thermal data correction and

because it requires only the at-sensor radiance data as input to esti-

mate the upwelling radiance and transmissivity of the atmosphere.

The temperature retrieval was then performed by using the tempera-

ture emissivity separation methods (TES), applying the normalization

emissivity method and selecting an emissivity of 0.98 for the pixel

with the maximum brightness temperature (Li, Zhou, et al. 2013). In

order to validate the TASI-600 retrieved temperature, the simulta-

neously ground-measured temperature of a swimming pool located in

the Latisana test site test was recorded using a thermocouple. The dif-

ference between the ground-based and the average temperature

retrieved with TASI was 0.2 K. To reduce the white noise introduced

by the TES algorithm in the thermal images, the brightness tempera-

ture was retrieved for each flight line using a linear regression

between the TES temperature images and the integrated radiance

images. To account for the changes in the meteorological conditions

during the experiment, the difference in temperature between each

treated plot and the closest control plot (ΔT) was used to study the

effect of Dicuran on the canopy temperature.

2.7 | Pigment concentration

Leaf samples were collected for laboratory measurements of chloro-

phyll (Chl) and carotenoid (Car) content. Seven samples per plot were

collected starting from 10 hr until 7 days after the treatments. Each

sample consisted of three to five leaves. Fresh samples were weighed
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(fresh weight; FW) for later estimation of Chl content in μg g−1

FW. The leaf material was harvested, placed in 2 ml safe lock reaction

tubes (Safe Lock, Eppendorf, Germany), frozen in liquid nitrogen and

stored at −80�C until pigment extraction. The extraction of Chl a, Chl

b and Car was carried out using a mixture of 1,000 ml of 100% ace-

tone buffered with 20 g of magnesium hydroxide carbonate

(~4MgCO3 � Mg[OH]2 � 5H2O) that was stored at 4�C. Hereafter, this

solution is referred to as acetone. The samples were ground using

200 μl of acetone and two steel balls of 5 mm diameter in a mixer mill

(MM200, Retsch, Germany) for 2 min at 30 rps and at room tempera-

ture. The extract was pipetted into a new 2 ml reaction tube. The

grinding jar and the steel balls were washed with acetone and this

solution was used to fill the sample up to 500 μl. The samples were

then centrifuged at 13,000 rpm for 5 min at 4�C. The excess solution

was then measured in the spectroradiometer (Uvikon XL, BIO-TEK

Instruments, Winooski, VT) using a 1 cm glass cuvette. The concentra-

tion of Chl and Car (μg�ml−1) was calculated following Lichtenthaler

and Buschmann (2001).

3 | RESULTS

3.1 | CO2 assimilation

Table 4 shows the results of gas exchange measured in all the treat-

ments around noon on the day of the Dicuran application and in the

subsequent 3 days in the case of plot D24. Plots D24 and D6 showed

a significant reduction of GPP and LUE after the application compared

to the control plot, whereas in D1.5, the GPP reduction was not

statistically significant. The extent of photosynthetic inhibition was

positively correlated with the dose of Dicuran. While the lowest con-

centration (i.e., 1.5 ml/L) only induced a non-significant decline in GPP

of about 17% on the first day, 6 ml/L reduced GPP by nearly 35%.

The largest decrease in GPP (nearly 90%) was observed in plants

treated with the highest herbicide dose (24 ml/L; plot D24). The LUE,

which was calculated as GPP/PAR, showed a similar behavior. GPP

tended to remain low, with an exception on the second day after the

treatment, when an increase of GPP, and thus LUE, was detected. The

Dicuran application also affected the respiration rate. An increased

respiration was measured in plots D24 and D1.5 immediately after

the treatment. In contrast, respiration in plot D6 showed no signifi-

cant difference to the control plot. The herbicide treatment did not

have a significant effect on evapotranspiration (i.e., H2O fluxes) during

the day of application. In the following days however, the treatment

in plot D24 resulted in a decrease in evapotranspiration. The decrease

in H2O fluxes in D24 was not statistically significant on Day 2 and

Day 3 due to the gradual decline found in the corresponding control

plot from Day 0 to Day 3.

3.2 | TASI surface temperature

The aerial thermal images in dicated an increase in canopy tempera-

ture in all treated plots. Figure 2 shows the development of the tem-

perature difference (ΔT) between the treated plots and their adjacent

control area. The ΔT increased gradually during the 5 days following

the application before it started to decrease towards the end of the

experiment. The plots treated with lower doses also showed an

TABLE 4 Effect of the application of Dicuran on CO2 fluxes measured around midday

DAT Treatment

GPP

(μmol CO2 m
−2 s−1)

LUE

(μmol CO2 μmol PAR−1)

Reco

(μmol CO2 m
−2 s−1)

NEE

(μmol CO2 m
−2 s−1)

F_H2O

(mmol H2O m−2 s−1)

0a Control −43.70 ± 1.2 0.02333 17.96 ± 1.5 −25.74 ± 1.1 9.97 ± 2.6

Dicuran 1.5 ml −36.34 ± 6.5 0.01878** 27.86 ± 3.9** −8.48 ± 2.6** 11.44 ± 0.2

Dicuran 6 ml −28.20 ± 3.0** 0.01494*** 13.50 ± 2.7 −14.69 ± 0.4 9.30 ± 1.7

0a Control −38.79 ± 6.3 0.01971 14.91 ± 1.5 −23.89 ± 5.0 11.88 ± 0.9

Dicuran 24 ml −4.33 ± 1.4*** 0.00220*** 22.08 ± 1.0*** 17.75 ± 2.4*** 12.43 ± 1.1

1 Control −41.18 ± 3.3 0.02041 20.45 ± 2.9 −20.73 ± 0.7 9.97 ± 0.6

Dicuran 24 ml −8.91 ± 1.6*** 0.00452*** 23.33 ± 1.9 14.43 ± 2.4*** 7.67 ± 1.2**

2 Control −45.32 ± 5.1 0.02106 22.27 ± 5.2 −23.05 ± 1.1 8.01 ± 0.3

Dicuran 24 ml −18.85 ± 4.8*** 0.00871*** 33.53 ± 2.6 14.68 ± 2.3*** 4.70 ± 1.15

3 Control −45.81 ± 8.0 0.02377 21.67 ± 7.4 −24.15 ± 0.7 6.18 ± 0.8

Dicuran 24 ml −3.33 ± 0.8*** 0.00160*** 11.58 ± 0.8** 8.25 ± 0.9*** 5.53 ± 1.19

Note: Positive flux indicates CO2 emission to the atmosphere, whereas, negative flux indicates CO2 uptake. Values represent the average and standard

deviation of different measurements taken ±1.5 hr around solar noon. The time of the measurements is expressed in days after treatment (DAT), where

DAT 0 correspond to the first post application measurement taken only 3 hr after the treatment with Dicuran.

Abbreviations: DAT, decimal days after treatment; GPP, gross primary productivity. Amount of CO2 assimilated by the vegetation (NEE – Reco).

Reco, ecosystem respiration. Amount of CO2 released to the atmosphere. NEE, net ecosystem exchange (GPP + Reco). LUE, light use efficiency (GPP/PAR).

F_H2O, water vapor fluxes.
aMeasurements taken a few hours after the application of Dicuran.

**p < .05. ***p < .001.
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increase in temperature, albeit with larger effects found in D1.5

than in D6.

3.3 | Changes in spectral vegetation indices as

result of the Dicuran action

Airborne images revealed changes in the spectral reflectance of cano-

pies treated with Dicuran (Figure 3). In treated plots, especially in plot

D24, vegetation indices related to green biomass and leaf pigment

concentration, such as NDVI and MTCI, showed a sustained decrease

in comparison to the control (Figure 4a,d). This was also observed in

ground-based top-of-canopy measurements (Figure 5b,e). Generally,

there was a good correlation between the NDVI and MTCI values cal-

culated from both platforms throughout the whole experiment

(Figure 4c,f).

Before the treatments, the plots showed values of NDVI around

0.84 and 0.90 for airborne and ground-based data, respectively

(Figure 4a,b). The NDVI in D24 did not show significant variations

immediately after the treatment, and it only started to decrease grad-

ually 2 days after the Dicuran application. It reached about 90% of the

control by Day 6, but it remained constant in the control plot. The

dynamics of NDVI in plots treated with lower doses followed a similar

pattern to the control plots. Negative effects of Dicuran were also

evident for MTCI, which exhibited larger and more significant changes

than NDVI following the application (Figures 3 and 5d,e). In both air-

borne and ground-based data, MTCI in plots D1.5 and D6 decreased

to levels similar to those in D24. Nevertheless, the ground-based data

showed a continuous decrease towards the end of the experimental

period, while the airborne measurements indicated MTCI stabilization

3 days after the application. Again, the control plots did not show sig-

nificant variations in MTCI during the course of the experiment,

always keeping higher values than the treated plots. These changes in

MTCI during the experiment were closely related to the changes in

leaf Chl a content (R2 = .749; p < .01; Figure 5), suggesting that MTCI

is a good proxy to detect changes in chlorophyll content induced by

Dicuran.

Substantial changes were also detected for PRI in the ground and

airborne data (Figures 3 and 4g,h). The treated plots showed a notice-

able increase of PRI 3 hr after the application of Dicuran; D24 caused

the largest increase while D6 the smallest. In all the treatments, this

initial increase was followed by a decrease, which was more clearly

manifested in the ground-based than in the airborne data (Figure 4h,

g). After 6 or 7 days, the PRI values of the ground-based measure-

ments were substantially lower in the treated plots than in the control

plots. Ground-based and airborne PRI values showed a significant cor-

relation throughout the experiment (Figure 4i). Considering that the

calculation of PRI is based on the wavelengths in the visible part of

the spectrum (Table 2), we examined the relationship between PRI

and leaf pigments. A significant negative correlation (R2 = .33; p < .05)

was found between PRI and the Car to Chl ratio (Car/Chl; Figure 5).

3.4 | Response of sun-induced chlorophyll

fluorescence

Dynamic changes of Fy* in response to the treatment with Dicuran

were detected by both airborne (Figures 6 and 7a,d) and ground-

based platforms (Figures 7b,e). Before the application of the herbicide,

the aerial images depicted similar Fy* (i.e., Fy*687 ≈ 1.5 x 10−5 and

Fy*760 ≈ 4.3 x 10−5) for all the plots. A substantial and rapid increase

in Fy* was observed in all the treated plots shortly after the applica-

tion. In plot D24, airborne measurements showed increases in Fy*687

and Fy*760 by nearly 50% and 90%, respectively, only 3 hr after the

herbicide was applied (Figure 7a,d). Likewise, the ground-based mea-

surements detected an increase of approximately 145% and 120% for

Fy*687 and Fy*760 in D24, respectively (Figure 7b,e). This increase in

Fy* coincided with the increase in PRI (Figure 4g,h). In the following

days, the Fy* in plot D24 decreased (Figure 7b,e) in parallel with the

decrease in NDVI, MTCI and PRI (Figure 4b,e,h). The Fy* returned to

the initial pre-treatment levels after 7 days.

Some differences were observed between the aerial and ground

observations in the recovery rate of Fy*687 after the peak. In this

regard, it is worth mentioning that the retrieval of fluorescence at

687 nm is prone to noise due to the shallower O2-B band. This can

result in some inconsistencies between the data from both platforms.

In spite of these limitations, the correlation between ground and aerial

data was high for both F687 and F760 (Figure 7c,f).

The dynamics of Fy*687 and Fy*760 showed similar temporal pat-

terns in plot D24 (i.e., a rapid increase, a peak approximately 3 hr after

the treatment and a steady decrease from Day 2 onwards). However,

in the plots treated with lower doses of Dicuran, there were some dif-

ferences in the temporal changes between both fluorescence peaks

(Figure 7a,b,d,e). In these plots, Fy*687 behaved similarly to plot D24,

but Fy*760 peaked only 2–3 days after the treatment. This difference

F IGURE 2 Dynamic changes of canopy temperature in plots

treated with different doses of Dicuran. Values represent the

difference in temperature (in K) between the treatment plots and their

adjacent control. Vertical bars represent the standard error of the

mean difference (n = 32 pixels) [Colour figure can be viewed at

wileyonlinelibrary.com]
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becomes more evident when comparing changes in Fy* versus PRI

(Figure 8). The peak of PRI coincided with the peak of Fy*687 in all the

plots, but in the following days Fy*760 continued increasing (at a lower

rate) in plots D6 and D1.5 despite the drop of PRI.

4 | DISCUSSION

In this study, we aimed to improve the understanding of how sun-

induced chlorophyll fluorescence fluctuates under a stress condition

and how these dynamics relate to changes in the photosynthetic

function. The use of Dicuran induced a quick and well-characterized

effect in the photosynthetic apparatus. Dicuran is a herbicide that

blocks the binding site of Plastoquinone A in photosystem II (PSII)

and therefore inhibits the photosynthetic electron transport to pho-

tosystem I (PSI; Rossini et al., 2015; Schreiber, 1986; Van

Rensen, 1989). It has been observed that certain grass species have

different levels of resistance to chlorotoluron (Ducruet, Sixto, &

Garcia-Baudin, 1993; Hall, Moss, & Powles, 1995; Hyde, Hallahan, &

Bowyer, 1996). This resistance is not explained by a change in the

F IGURE 3 Representation of airborne images showing the dynamics of vegetation indices NDVI, MTCI and PRI in plots treated with three

different doses of Dicuran: 24 ml/L (D24), 6 ml/L (D6) and 1.5 ml/L (D1.5). Plot D24 was treated on June 12 and plots D6 and D1.5 were treated

on June 19. The time of the measurements is expressed in days after treatment (DAT), where DAT 0 correspond to the first post-application

measurement taken only 3 hr after the treatment with Dicuran. Scale bar: 20 m. MTCI, Meris Terrestrial Chlorophyll Index; NDVI, Normalized

Difference Vegetation Index; PRI, Photochemical Reflectance Index
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F IGURE 4 Dynamic changes of vegetation indices during the experiment for all the plots estimated from airborne (a, d and g) and ground-

based measurements (b, e and h). NDVI (a and b), MTCI (d and e) and PRI (g and h). Correlation between airborne and ground observations for

NDVI (c), MTCI (f) and PRI (i). Vertical bars in airborne data represent the standard deviation of pixels within each plot. Vertical bars in ground-

based data represent the standard deviation of the different point measurements taken around noon for each plot. The time of the measurements

is expressed in decimal days after treatment (DAT), where DAT 0 represent the moment of the application. Data values obtained before the

treatment were grouped at DAT −1 for clarity of the results. MTCI, Meris Terrestrial Chlorophyll Index; NDVI, Normalized Difference Vegetation

Index; PRI, Photochemical Reflectance Index [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Relationship between the concentration of Chl a and the MTCI (a), and between the ratio carotenoids/chlorophyll (Car/Chl) and

the PRI (b). The MTCI and PRI were estimated from the spectral reflectance measured with the airborne DUAL module. Data points represent the

measurements of all plots for all the dates where airborne data coincided with leaf sampling. Significance: *p < .05, **p < .01, ***p < .001. MTCI,

Meris Terrestrial Chlorophyll Index; PRI, Photochemical Reflectance Index
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herbicide active site, but rather by the capacity to metabolize this

molecule. Consequently, PSII remains equally sensitive to the action

of this herbicide in both resistant and non-resistant species (Hall

et al., 1995). We did not investigate the resistance to Dicuran of

the species used in our study and to the best of our knowledge, no

information is available in the literature. A difference in Dicuran

resistance between these species would mainly have an effect on

the magnitude of the fluorescence peak observed in the first hours

after the application, and on the change rate of pigment degradation

and fluorescence on the following days. Unfortunately, the nature

of our observations would not allow the separation of the response

of each species in such a mixed turf and the plot was considered as

a homogeneous vegetation unit. However, given the management

of the turf, we can safely assume that all the plots had the same

grass composition. Therefore, the conditions of the experiment and

the results are still valid to draw general conclusions on the fluores-

cence behavior in relation to biochemical and biophysical changes in

the photosynthetic apparatus. Other stress factors that may occur

under natural environmental conditions generally induce a different

response of fluorescence emission. For example, water deficiency or

heat stress usually induces a reduction in photosynthetic efficiency,

but typically also an increase of the NPQ which results in a decline

in fluorescence emission (Ač et al., 2015; Dobrowski, Pushnik,

Zarco-Tejada, & Ustin, 2005; Flexas et al., 2002; Song et al., 2018).

On the other hand, fluorescence emission increases under chilling

temperatures (Ač et al., 2015; Agati, 1998). Biotic stresses can also

induce changes in fluorescence. Zarco-Tejada et al. (2018) observed

lowered fluorescence values when olive trees were infected with

Xylella fastidiosa. Nevertheless, despite the differences that might

exist between the action of Dicuran and natural stressors, some of

F IGURE 6 Representation of airborne images showing the dynamics of normalized sun-induced chlorophyll fluorescence at 687 nm (Fy*687)

and at 760 nm (Fy*760) in plots treated with three different doses of Dicuran: 24 ml/L (D24), 6 ml/L (D6) and 1.5 ml/L (D1.5). Plot D24 was

treated on June 12 and plots D6 and D1.5 were treated on June 19. The time of the measurements is expressed in days after treatment (DAT),

where DAT 0 correspond to the first post-application measurement taken only 3 hr after the treatment with Dicuran. Scale bar: 20 m
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the alterations in the processes involved in photosynthesis are

comparable.

Only a few hours after the application of Dicuran, a rapid increase

in fluorescence was measured by both aerial and ground-based plat-

forms. The rapid changes seen in the fluorescence signal, but not seen

in the reflectance indices related to leaf pigments, confirms that the

retrieved fluorescence signal dynamically responded to changes in

photosynthetic function while changes in vegetation greenness were

minimal shortly after the application of the herbicide. Moreover, these

changes in fluorescence coincided with the detection of large reduc-

tions in CO2 assimilation rates and LUE together with an increase in

canopy temperature. This suggests that the treated plants closed their

stomata in the days following the application.

The relationship between LUE and Fy* was different when

observing the behavior of individual plots in time. For instance, plot

D24 showed a decrease of Fy* following the peak observed immedi-

ately after the application, whereas LUE and GPP tended to remain

low and constant. This implies that the decrease in Fy* after its peak

could not be explained only by a change in LUE. We found a progres-

sive decrease in leaf Chl content (through MTCI) and PRI in Dicuran-

treated plots during the course of the experiment. These observations

may indicate that the mid-term decreases of fluorescence resulted

F IGURE 7 Dynamic changes of normalized sun-induced chlorophyll fluorescence (Fy*) during the experiment for all the plots estimated from

airborne (a and d) and ground-based measurements (b and e). Fy*687 (a and b) and Fy*760 (d and e). Correlation between airborne and ground

observations for Fy*687 (c) and Fy*760 (f ). Vertical bars in airborne data represent the standard deviation of pixels within each plot. Vertical bars in

ground-based data represent the standard deviation of the different point measurements taken around noon for each plot. The time of the

measurements is expressed in decimal days after treatment (DAT), where DAT 0 represent the moment of the application. Data values obtained

before the treatment were grouped at DAT −1 for clarity of the results [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Relationship in time between PRI and the normalized sun-induced chlorophyll fluorescence measured at 687 (Fy*687) and 760 nm

(Fy*760). The arrows indicate the time series and trends of the measurements in each plot. The error bars represent the standard deviation [Colour

figure can be viewed at wileyonlinelibrary.com]
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from a reduction of photosynthetic pigments and the activation of

non-photochemical energy dissipation mechanisms. The reduction in

the chlorophyll content may be a direct consequence of photodamage

and part of the photoprotective mechanisms to reduce the absorbed

radiation (Osmond, 1994; Ridley, 1977; Ruban & Horton, 1999). Inter-

estingly, despite the decrease in NDVI and MTCI observed in sprayed

plants, the Fy* remained higher in the treated compared to the control

plots towards the end of the experiment. Two possible reasons could

explain this behavior. One possibility is that at this point the effect of

the pigment breakdown and accompanying reduction in absorbed

PAR, is still lower compared to the effect of the blockage of the elec-

tron transport chain. Therefore, treated plants would still emit more

fluorescence than in their initial state. A second possibility is that

since top leaves were subjected to higher PAR and probably to higher

levels of Dicuran, the pigment degradation started from the top layer.

This would result in a higher light penetration and consequently a

higher contribution to the total fluorescence by the middle and bot-

tom layers of the canopy. An increase in the fluorescence emitted by

the lower layers, plus a reduction of the red fluorescence re-absorp-

tion, could explain why Fy* remained higher in treated plots compared

to control plots a few days after the treatment. Unfortunately, we do

not have sufficient data to draw a more conclusive explanation of this

phenomenon and further studies on the vertical profiles of physiologi-

cal parameters are required to verify the above hypotheses.

It has been reported that the PRI is a good estimator of NPQ

(Gamon et al., 1992; Panigada et al., 2014; Schickling et al., 2016).

However, it has been shown to be sensitive to changes in the content

of pigments in leaves, in particular to the ratio Car/Chl (Garbulsky

et al., 2011; Panigada et al., 2009). In our experiment, the rapid

increase of PRI observed immediately after the application of the Dic-

uran suggests a change in NPQ activity at this time point. Under non-

stress conditions, the PRI would normally decrease with increasing

light towards midday because of the activation of the xanthophyll

cycle, a major component of the NPQ (Gamon et al., 1992; Müller, Li,

Niyogi, & Muller, 2001; Murakami & Ibaraki, 2019). However, this

decrease in PRI during a dark–light transition is prevented when

DCMU (with a similar mechanism of action to Dicuran) inhibits the

violaxanthin de-epoxidation by preventing the trans-thylakoid pH gra-

dient (Gamon et al., 1990; Murakami & Ibaraki, 2019). This would

explain the high values of PRI observed around noon in plots treated

with Dicuran. To confirm this, we replicated the experiment on a

smaller scale under controlled conditions and within a shorter time

frame. Plants treated with Dicuran showed a fast increase in PRI dur-

ing the first 30 min, whereas PRI remained low in the control plants

(Figure S4). It is worth mentioning that the data displayed in Figure S4

was collected only to validate the field and airborne data collected in

the main experiment. Any further analysis on this data obtained at a

shorter time scale is beyond the scope of this article.

The initial increase in PRI observed in treated plots suggests a

partial inhibition of the xanthophyll-mediated NPQ, an effect that

would contribute to the increase of the normalized fluorescence

observed immediately after the treatment. Furthermore, the lower

peaks of PRI observed in plots treated with lower doses of Dicuran

may indicate a lower degree of NPQ inhibition. This could explain the

lower peaks observed for Fy* in this plot, especially for Fy*760. The

later decline of PRI in all the treated plots could be explained by a

reactivation of the NPQ mechanisms during the days following the ini-

tial peak of Fy*. However, under these conditions, the decrease of Fy*

and PRI after their peaks can be better explained by the pigment deg-

radation inferred from NDVI and MTCI measurements and confirmed

by the laboratory pigment analysis. In our measurement, nearly 40%

of the variation of PRI was explained by changes in the Car/Chl ratio,

confirming the findings of Panigada et al. (2009). A decrease of this

ratio driven by the degradation of chlorophyll would result in a lower

PRI (Garbulsky et al., 2011). Similarly, the emission of fluorescence

would be reduced in all wavelengths due to a lower absorption

of PAR.

It has been reported that the difference between the kinetics of

Fy*687 and Fy*760 can provide valuable information to elucidate the

level at which the stress is affecting photosynthesis (Ač et al., 2015;

Buschmann, 2007; Wieneke et al., 2016). In this experiment, we

observed that in the lower dose treatments the initial rise of Fy*687

was quenched faster than Fy*760. This rapid decrease of Fy*687 coin-

cided with the decrease of PRI suggesting an effect of the combined

action of NPQ and the degradation of chlorophyll. In the case of

Fy*760, the peak was observed after the PRI started to decrease. One

reason for this could be that the Dicuran action directly affects the

short-term and mid-term regulatory mechanisms of light harvesting in

the PSII where the F687 originates. Hence, any evolution of the stress

would modulate this signal almost instantaneously. On the other hand,

F760 is emitted by both photosystems. The fraction of F760 emitted

from PSI would only change indirectly and therefore more slowly after

the Dicuran application. Further analysis of this would require an

improvement in the red fluorescence measurement uncertainties plus

complementary data, such as fluorescence emission and the quantum

efficiency at each photosystem using active fluorometry.

In summary, the changes in fluorescence emission that we

observed under stress conditions resulted from the interaction of dif-

ferent factors regulating photosynthesis. Understanding these effects

is crucial for the use of sun-induced fluorescence as a proxy for

remote observations of photosynthesis. The set of parameters mea-

sured during this study proved to be useful to infer changes in a series

of interlinked processes that affect fluorescence emission and the

functioning of photosynthesis during stress. The sudden increase of

Fy* reflects the immediate inhibition of photosynthetic electron trans-

port in light reactions. Additionally, non-photochemical mechanisms

for energy dissipation were inhibited as indicated by the rapid

increase in PRI. Presumably, this happened because the absence of

electron transport increased the pH in the thylakoid lumen thereby

inhibiting the de-epoxidation of violaxanthin into zeaxanthin (Müller

et al., 2001). This makes the photosynthetic apparatus susceptible to

photodamage. A degradation of chlorophyll occurred due of the

excess of energy as well as being part of the strategy to reduce the

absorbed radiation. At the same time, the blockage of the photosyn-

thetic light reactions prevented the reduction of NADP+ to NADPH

and the formation of ATP. This resulted in an almost complete
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downregulation of CO2 fixation by Rubisco, which was clearly

reflected in a decrease in carbon assimilation detected by our gas

exchange measurements. This would also result in an accumulation of

reactive oxygen species and stromal calcium in the chloroplasts. This

may be part of a signaling mechanism for stomatal closure (Wang, He,

Guo, Tong, & Zheng, 2016). Both the increase of canopy temperature

and the decrease in transpiration rate observed in the treated plots

support the idea that stomata partially closed after the application of

Dicuran. In the following days, the gradual decline in chlorophyll con-

tent (inferred from the changes in MTCI) contributed to a decrease in

the fluorescence signal. Although the GPP data showed some signs of

recovery in the plot treated with the highest dose of Dicuran, the

drastic decline of Fy* and PRI towards the end of the experiment

were better explained by a long-term breakdown of chlorophyll and

possibly to irreversible damage in the photosynthetic apparatus.

Indeed, by the end of the experiment the plants treated with the

highest dose were killed by the action of the herbicide.

5 | CONCLUSIONS

In this experimental study, we explored the use of sun-induced fluo-

rescence together with other remote sensing approaches as a proxy

to detect stress-induced limitations in photosynthetic activity in large-

scale vegetation. The herbicide Dicuran was used to simulate a stress

event that triggered changes in different components of the photo-

synthetic apparatus. We showed that no single measurement parame-

ter was sufficient to reflect the dynamic changes of CO2 uptake rate.

Fluorescence measured at both 687 and 760 nm could clearly tracked

functional impairment of the rate of photosynthetic electron trans-

port, indicating that fluorescence is the superior remote sensing indi-

cator for tracking acute short-term limitation of photosynthesis.

Longer term adaptations of the photosynthetic apparatus involve a

complex interplay of different mechanisms such as the optimization of

photosynthetic efficiency at PSII and different pathways of non-

photochemical energy dissipation. The quantification of these mecha-

nisms is therefore necessary for designing a forward model to unravel

the mechanism of the action of a stressor and to estimate photosyn-

thetic CO2 uptake rates. As suggested by this study, ancillary remote

sensing variables such as vegetation indices and canopy temperature,

can be used to quantify the dynamics of non-photochemical energy

dissipation mechanisms, the amount and composition of photosyn-

thetic pigments and the stomatal activity. Therefore, future missions

and observations of fluorescence at large scales should consider the

measurement of these variables to develop such a model and achieve

a more precise assessment of changes in photosynthesis function.
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