

10

15

20

25

30

35

Water-promoted interfacial pathways in methane oxidation to methanol on a CeO_x-Cu₂O catalyst

Authors: Zongyuan Liu^{1†}, Erwei Huang^{2†}, Ivan Orozco², Wenjie Liao², Robert M. Palomino¹, Ning Rui,¹ Thomas Duchon³, Slavomir Nemsak⁴, David Grinter,⁵ Mausumi Mahapatra¹, Ping Liu^{1,2,*}, José A. Rodriguez ^{1,2,*}, Sanjaya D. Senanayake ^{1,*}

Affiliations:

¹Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973 USA.

²Chemistry Department, Stony Brook University, Stony Brook, NY 11794 USA.

³Peter-Grünberg-Institut 6, Forschungszentrum Jülich, 52425 Jülich, Germany.

⁴Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

⁵Diamond Light Source Limited, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.

*Correspondence to: pingliu3@bnl.gov (P.L.); rodrigez@bnl.gov (J.A.R.); ssenanay@bnl.gov (S.D.S)

†Dr. Z. Liu and E. Huang contributed equally to this work and should be regarded as co-first authors.

Abstract: Highly selective oxidation of methane to methanol has long been challenging in catalysis. Here, we reveal key steps for the promotion by water when tuning the selectivity of a well-defined CeO_x/Cu₂O/Cu(111) catalyst from CO and CO₂ to methanol under a reaction environment with methane, oxygen and water. Ambient-pressure x-ray photoelectron spectroscopy showed that water added to CH₄ and O₂ led to surface CH₃O and accelerated methanol production. These results were consistent with density functional theory calculations and kinetic Monte Carlo simulations which showed that water preferentially dissociates over the active Ce ions at the CeO₂-Cu₂O/Cu(111) interface. The adsorbed OH blocked O-O bond cleavage that would dehydrogenate CH₃O to CO and CO₂, , and it directly converted this species to methanol, whileO₂ now reoxidized the reduced surface. Water adsorption also displaced the produced methanol into the gas phase.

One Sentence Summary: New mechanistic insights on the role of water in the direct catalytic conversion of methane to methanol.

Main Text: Methane (CH₄), the main component of natural gas, is difficult to upgrade to value added chemicals (aromatics, olefins, oxygenates) or even hydrogen (H₂) because of its strong C-H bonds (104 kcal/mol). In nature, enzymes use oxygen-containing molecules such as water (H₂O), oxygen (O₂), and carbon dioxide (CO₂) to convert CH₄ to methanol (CH₃OH) at ambient temperature directly, unlike commercial process that require the energy-intensive formation of syngas (H₂ and CO) (I-I-I). Applying such biomimetic strategies to heterogeneous catalysts is often limited by the need for high temperatures that lead to poor selectivity (I-I-I), but some oxide and metal/oxide surfaces can dissociate CH₄ at room temperature, which opens the possibility for a direct CH₄ \rightarrow CH₃OH conversion (I2-I3). Indeed, a Ni/CeO₂(111) catalyst can directly synthesize CH₃OH on exposure to a mixture of CH₄, O₂ and H₂O. The selectivity of the process is rather low

(<40%) (14). On the other hand, an inverse catalyst of the CeO₂/Cu₂O/Cu(111) type displays a CH₄ to CH₃OH selectivity close to 70% (16).

Extensive studies have investigated the reaction mechanism, including the active sites, the nature of reaction intermediates, the operating pathway and the role of O_2 and O_2 and O_3 in the O_4 CH₃OH conversion. Some studies have proposed O_2 as the oxidizing agent for conversion of O_4 to O_3 and O_4 through the generation of an active metal= O_4 species on the catalyst surface at high temperature (450 to 500 K) (10, 14, 17-19). H₂O can help in the hydrogenation of O_4 or block surface sites preventing its decomposition and facilitating the extraction of methanol (10, 11, 14). In the case of O_4 Cu-containing zeolites that mimic enzymes, O_4 Generation is a sequential process that involves treatment or activation with O_4 reaction with O_4 and finally extraction with water (6, 7, 11, 20). For the active O_4 Cu₂O/Cu(111) catalyst, the origin of the high selectivity (~ 70%) toward O_4 remains elusive.

We combined ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) with density functional theory (DFT) calculations and kinetic Monte Carlo (KMC) simulation and obtained direct evidence for the essential role of H_2O in the selective production of CH_3OH upon exposure of CH_4 , O_2 and H_2O over the $CeO_2/Cu_2O/Cu(111)$ catalyst. The spectroscopic measurement and theoretical modeling agreed that H_2O acts not only as an extractor of CH_3OH as previously reported (10, 11, 14), but more importantly as a blocker and active chemical reagent. The addition of H_2O blocks the metal=O mediated mechanism proposed previously (10, 14, 17-19) and prevents the complete dissociation of CH_4 to form CO or CO_2 , and opens a new *OH-mediated pathway, which enables the activation of CH_4 for direct CH_3OH formation at the $CeO_2-Cu_2O/Cu(111)$ interface. Direct $CH_4 \rightarrow CH_3OH$ conversion by *OH opens new opportunities to more active and selective catalysts for CH_4 utilization.

Both Cu-containing enzymes (3, 4) and zeolites (6, 10, 11) convert CH₄ into CH₃OH. The oxidation state of the copper in these systems is usually assumed to be +2 before reaction with CH₄ and +1 after CH₄ activation (6). In AP-XPS experiments, we found a very low reactivity of plain Cu₂O/Cu(111) systems toward CH₄ at room temperature. But this system and ceria are very active for water dissociation (15, 21). The deposition of cerium on Cu₂O/Cu(111) under an atmosphere of O₂ (5 × 10⁻⁷ torr) leads to formation of two types of islands, as shown by images of scanning tunneling microscopy (STM) (22). Large islands of ceria (30 to 50 nm in size and triangular shape) were embedded in the substrate step edges and had a morphology different from that seen for the two most stable surfaces of bulk ceria: CeO₂(111) and CeO₂(110) (22). These islands had a high of ~ 0.3 nm, which was consistent with a single layer of cerium sandwiched in between two layers of oxygen. In addition to the large ceria islands, a small concentration of small ceria islands formed that were 0.5 to 5 nm in size (16,22).

As shown in Fig. 1A, exposing a $CeO_x/Cu_2O/Cu(111)$ surface ($\theta_{CeO2}=0.5$) to 20 mTorr of CH₄ at 300 K resulted in two peaks at ~287.0 eV and 285.3 eV in the C 1s region, which we attributed to the CH₄ gas phase and surface -CH_x species, respectively (14). The formation of -CH_x resulted from the dissociative adsorption of CH₄ at room temperature at a coverage of ~ 0.15 monolayer (ML). The hydrocarbon fragment had a relatively strong surface bond as it is still adsorbed on surface at 450 K At this temperature, an additional feature grew in 289.4 eV that corresponded to CO_x groups formed by the reaction between surface O sites and C atoms produced by the full decomposition of CH₄ (14). Thus, in contrast to plain Cu₂O/Cu(111), the CeO₂/Cu₂O/Cu(111) surface exhibited substantial reactivity toward CH₄.

The C 1s XPS acquired while exposing CuO₂/Cu(111) and several CeO₂/CuO₂/Cu(111) surfaces to 20 mTorr of CH₄ at 300 K are compared in Fig. 1B. After normalization by the intensity of the peak for gaseous CH₄, the most active CeO₂/Cu₂O/Cu(111) system was that with a ceria coverage near 0.5 ML (Fig. 1C). A 1.5 ML ceria system was not very active, probably because the ceria-copper oxide interface was substantially reduced and ceria deactivated when two-dimensional (2D) islands grew into three-dimensional (3D) ones (22). When these AP-XPS results are compared with data of catalytic activity for the conversion of CH₄ on CeO₂/Cu₂O/Cu(111) (16), one finds excellent agreement between the ability of the surface to activate CH₄ at room temperature and its activity for the conversion of the hydrocarbon to CH₃OH or a CO/CO₂ mixture. A CeO₂/Cu₂O/Cu(111) system with 0.5 ML of ceria exhibited the best performance for CH₄ activation and conversion.

Over Cu-containing zeolites, CH₃OH is produced by the sequential steps of activation in O₂, reaction with CH₄ and extraction with H₂O (6, 7, 11, 20). After sequentially adding 10 mTorr of O₂ into the chamber at 450 K (CH₄/O₂ reaction feed), no changes were seen in the C 1s XPS region for Cu₂O/Cu(111) and CeO₂/Cu₂O/Cu(111) surfaces. In particular, no CH₃O peak around 286.5 eV was detected. This result is consistent with the lack of CH₃OH formation over these surfaces where only CO and CO₂ are detected as reaction products in the absence of H₂O (16). Although O₂ dissociates readily on CeO_x/Cu₂O/Cu(111) (23), a metal-O or metal=O group is not an efficient agent for the formation of CH₃OH on these surfaces. A CH₃O intermediate could be formed, but it probably would decompose very rapidly on some active sites of the surface (see DFT calculations below) producing mainly CO/CO₂ and not give a signal in AP-XPS (16).

The addition of H₂O to the CH₄/O₂ reaction mixture induced drastic changes in the chemical process. On CeO₂/Cu₂O/Cu(111), water dissociated to form OH on the surface at 300 and 450 K as seen in AP-XPS (Fig. S1). Signals for OH species bound to Cu₂O (~531.1 eV) (15) and ceria (~532.1 eV) (21) were observed in the O 1s region (Fig. S1). Fig. 2A shows C 1s XPS spectra collected while exposing a CeO₂/Cu₂O/Cu(111) surface (θ ceo₂= 0.5) to a set of CH₄/O₂/H₂O reactants at temperatures between 300 and 450 K. In the presence of water, one can see a clear change in the C 1s features with signals not seen in the case of a dry experiment, where only moderate amounts of CH_x and CO_x are detected (for an example, see Fig. 1A). The spectra in Fig. 2A were curve fitted (Fig. S2) well with peaks for CO_{x,ads}, CH_{4,gas}, CH₃O_{ads}, CH_{x,ads} and C_{ads} (24). In test experiments for the adsorption of CH₃OH and its derivatives, the features around 286.2 eV corresponded to adsorbed CH₃O, in good agreement with previous XPS studies (25, 26). As mentioned above, this species was not seen after exposing the surfaces to a simple CH₄/O₂ reaction mixture. Furthermore, in Fig. 2A, the adsorbed CH₃O was seen at temperatures of 400 and 450 K, which were the onset for a catalytic CH₄→CH₃OH transformation over CeO₂/Cu₂O/Cu(111) surfaces exposed to a mixture of CH₄/O₂/H₂O (16).

Figure 2B compares C 1s spectra collected after exposing a $CeO_2/Cu_2O/Cu(111)$ surface $(\theta_{CeO2}=0.5)$ to CH_4 , CH_4+O_2 , CH_4+H_2O , and $CH_4+H_2O+O_2$ at 450 K, a threshold for CH_3OH production (16). The amounts of CH_x and CH_3O present on the catalyst surface under pure CH_4 and a CH_4/O_2 mixture were negligible. Thus, a reaction feed of CH_4/O_2 produced mainly (~ 95%) CO and CO_2 as products (16). CH_3O and CH_x appeared when H_2O is added to the reaction feed, but the amount of CH_3O was larger when a mixture of $CH_4/O_2/H_2O$ is used (Fig. S3), and the CH_3O signal in AP-XPS was correlated with the CH_3OH selectivity measured in catalytic tests (Fig. 2C). At high temperatures, CH_4 alone could induce a partial reduction of the ceria overlayer (Fig. S4), but under a mixture of $CH_4/O_2/H_2O$, the ceria remained fully oxidized (Fig. S5). And

there was not reduction of the Cu₂O film in between ceria and Cu(111). Although the CeO₂/Cu₂O/Cu(111) system has special properties for the dissociation of CH₄ (Fig. 1), some of its sites were probably too reactive to allow any CH₃O formed to avoid decomposition. The OH groups coming from water dissociation (22) were necessary to block these sites and, as we will see below, they also could participate in an additional reaction path for the activation and conversion of CH₄.

Our AP-XPS measurements were fully consistent with the theoretical calculations using DFT and the KMC simulation under the experimental conditions (pressure ratio: CH₄: O₂ = 2:1 or CH₄: O₂: H₂O = 2: 1:8; T= 450K, see SI for details). In the DFT calculations, the CeO₂/Cu₂O/Cu(111) catalyst was modeled by depositing a Ce₃O₆ cluster on the 44 structure of Cu₂O/Cu(111) (Fig. S6A, see SI for detail and (*16*). [note referee comment about the cluster used] According to the DFT results, the CeO₂/Cu₂O/Cu(111) system should produce mainly CO₂ from a CH₄/O₂ mixture following a reaction path that is highly exothermic (Fig. S7 and S8). Initially, upon exposure to CH₄ and O₂, an active Ce site (Ce-2 in Fig.S6B) at the CeO₂-Cu₂O/Cu(111) interface stabilized O₂ (binding energy or E_{ads} = -14.53 kcal/mol) [given the expts are in kcal/mol, it would be better to report the energies the same way here] and enabled the facile O-O bond cleavage with the synergy of Cu from the Cu₂O film (reaction energy or Δ E = -24.44 kcal/mol; activation barrier or E_a = 5.54 kcal/mol, Fig. 3A). However, in this case, none of the terminal metal=O oxo ligands, which were previously proposed as the active sites for CH₄ to CH₃OH conversion for the zeolite-based systems (*10*, *17-19*), survived. Instead, the doubly bridging oxo ligand formed (*O) over the interfacial Cu-Ce bridge sites (Fig. 3A and S7).

The CH₄ also preferred the same Ce site; yet the KMC simulations show that it could not compete with O₂ because of weakened binding (E_{ads} = -2.54 kcal/mol) and the elevated barrier for dissociation (E_a = 11.76 kcal/mol) (16). Thus, all active Ce sites at the CeO₂/Cu₂O/Cu(111) were occupied by *O from O₂ dissociation. The formed doubly bridging oxo Ce-O-Cu species were active to adsorb (E_{ads} = -1.15 kcal/mol) and activate CH₄ through the preferential C-O bond association. Either methoxy (*CH₃O) species (ΔE = -37.82 kcal/mol, E_a = 18.45 kcal/mol, Fig. S7 and S8) formed, or *CH₃OH formed directly at the interface (E_a = 16.37 kcal/mol). The KMC simulations, however, demonstrated that the produced *CH₃OH was not stable and preferentially dissociated to *CH₃O with no barrier (ΔE = -14.53 kcal/mol).

The sequential dehydrogenation of *CH₃O to *CH₂O, *CHO and eventually production of CO₂ was highly favorable in terms of both thermodynamics and kinetics according to the DFT calculations (Fig. S7), and hence none of the intermediates was likely to be stable. Indeed, under steady states the CeO₂/Cu₂O/Cu(111) surface remained clean on exposure to CH₄ and O₂, as demonstrated by the KMC snapshot (Fig. S9). No *CH₃O or other adsorbed surface species could be observed, which agreed well with the AP-XPS measurements in Fig. 2B and 2C for the experiment with a CH₄/O₂ reaction feed. Regarding the products in the catalytic tests (*16*), the KMC results were consistent with the experimental results (Fig. 2C), showing that CeO₂/Cu₂O/Cu(111) was highly selective to CO₂/CO on exposure to CH₄ and O₂ rather than CH₃OH (Fig. 4A). Finally, during the dehydrogenation process, oxygen vacancies (O_v, Fig. S7 and Fig. S8) were generated on the supported CeO₂ cluster, that could be quickly filled in presence of O₂ as reported previously (*16*).

The addition of H₂O in the mixture of CH₄ and O₂ changed the reaction network on the catalyst surface. First, H₂O blocked the adsorptions and dissociation of O₂ at the active interfacial Ce site (Fig. 3A), as seen under exposure of CH₄ and O₂. According to the DFT calculations, H₂O

also preferred (E_{ads}= -15.91 kcal/mol), as did O₂, to adopt a tilted conformation [please check my edit, but the original was not clear, and picking out one structure in fig S9 and S10 is not obvious] because of the formation of hydrogen bond with nearby bridging oxygen (Fig. 3A, S10 and S11). The tilted adsorption was followed by a spontaneous O-H bond cleavage (Fig. 3A), which was much more facile than the O-O (E_a = 5.54 kcal/mol) and C-H bond breakage (E_a = 11.76 kcal/mol) (*16*). Also, the pressure of H₂O was eight times higher than that of O₂ under reaction conditions considered in both experiment and KMC simulations. Thus [the next sentence on adsorption doesn't follow in an obvious way—did the KMC sims also use this pressure ratio?], the KMC simulations showed that the adsorption rate of O₂ decreased by a factor of ~30 by the addition of H₂O. In this case, 90% of active Ce sites were occupied by hydroxyl (*OH) from H₂O dissociation and only 10% formed the Ce-O-Cu oxo species, as was the case without H₂O. Thus, the adsorbed *OH groups blocked reactive Ce sites from interaction with O₂ and in the presence of H₂O, new reaction paths are enabled to facilitate CH₃OH production (Fig. 3A, S10 and S11).

The *OH species generated by H_2O dissociation at the interfacial Ce sites opened a new highly effective pathway for a real catalytic transformation (Fig. 3B and S10). Along the new path, the direct conversion from CH₄ to *CH₃OH is substantially populated by the active *OH at the Ce site (Fig. 3B and S10) through the concerted C-O bond association and C-H dissociation ($\Delta E = 18.68 \text{ kcal/mol}$), $E_a = 22.37 \text{ kcal/mol}$). This step represented the rate-limiting step along the path and the negative shift in barrier by 0.1 eV can effectively increase the CH₄ conversion by 93.79% and CH₃OH selectivity by 3.78%. This reaction is followed by the barrierless dissociation to *CH₃O, as was for the CH₄ oxidation by O₂. The difference is that the presence of H₂O predominantly blocked the *CH₃O decomposition and thus the formation of CO₂. Instead, H₂O also enabled the extraction of CH₃OH from *CH₃O, or the removal of *CH₃O as gas phase CH₃OH, in addition to blocking O₂ adsorption and activating CH₄.

This process started with the formation of *CH₃O···HOH through hydrogen bonding (Fig. 3C and S12). This structural motif drove the proton hopping from H₂O to *CH₃O ($\Delta E = 4.85$ kcal/mol, E_a = 6.69 kcal/mol, Fig. 3C and S12) and produces gas phase CH₃OH and the active *OH to replace the binding site for *CH₃O at interfacial Ce site, which is active for direct CH₄ \rightarrow CH₃OH conversion (Fig. 3B and S10). The dissociated *H from CH₄ resulted in the hydroxylation of CeO₂ (Fig. S10 and S11), which could easily be removed with the assistance of *H₂O at the Ce site, leading to the formation of oxygen vacancy (O_V) and thus the reduced CeO_x ($\Delta E = -8.30$ kcal/mol, E_a = 2.31 kcal/mol, Fig. S10). At this point, O₂ could preferentially fill the O_V and reoxidize CeO_x to CeO₂ (Fig. S10), which is the dominant role of O₂ during this process due to the preferential O₂ dissociation (E_a = 3.00 kcal/mol) over H₂O dissociation (E_a = 15.45 kcal/mol) at the O_V site.

According to the KMC simulations, under steady states of CH₄ oxidation by O₂ and H₂O, the CeO₂/Cu₂O/Cu(111) surface was not clean anymore. Instead, two stable surface species, *OH and *CH₃O (Fig. 4B), which agreed very well with measurements of AP-XPS (Fig. 2B). Both surface species bound to the supported CeO₂ at the interface (Fig. S13). The formation of *OH was associated with H₂O and CH₄ dissociation, and *CH₃O is formed because of the interplay between the barrierless O-H bond cleavage of *CH₃OH and the activated extraction of CH₃OH from *CH₃O by H₂O (Fig. 3C, S7 and S10).

The amount of *OH present on the catalyst surface was larger than the amount of *CH₃O (Fig 4B), a condition which was essential to prevent the full oxidation of the formed *CH₃O

10

15

20

25

30

35

species. The stabilized *CH₃O and the enabled *CH₃O extraction by adding of H₂O to the mixture of CH₄ and O₂ tuned the selectivity of CeO₂/Cu₂O/Cu(111) from CO₂ to CH₃OH as the major product according to the KMC simulations (Fig. 4A), which was also observed by the AP-XPS measurements and catalytic tests [Fig. 2C and (16)]. The addition of H₂O also facilitated the CH₃OH production through oxidation of CH₄ by O₂ by hindering the *CH₃O dehydrogenation and promoting the extraction of CH₃OH according to the KMC simulation results (Fig. 3C and S13). About one half of the dissociated *O at the active Ce sites led to the CH₃OH production, and the rest remained as oxidizing agent to produce CO₂. Yet, because of lower adsorption rate of O₂ than H₂O at the active Ce sites, 95% of produced CH₃OH is by reaction with H₂O, and the dominant roles that O₂ plays is to fill the O_v sites via facile dissociation. [as meant? O₂ just reoxidizes Ce]

The AP-XPS data were consistent with the results of combined DFT and KMC simulations, showing that on the active CeO₂-Cu₂O interfaces, CH₄ was preferentially oxidized by O₂ into CO and CO₂ (Fig. S14A). When H₂O is added to a CH₄/O₂ mixture, the selectivity was tuned toward CH₃OH (Fig. S14B). The CeO₂/Cu₂O/Cu(111) inverse catalyst exhibited a reactivity different from that reported for zeolite-based materials during the selective oxidation of CH₄. On the zeolite-based catalysts, O₂ is considered as the oxidizing agent and H₂O is just extracting [there has to be a better word—displacing?] the formed *CH₃OH.

However, on $CeO_2/Cu_2O/Cu(111)$, H_2O played three key roles. As on a zeolite-based material, H_2O acted as a site blocker. It preferentially occupied the active Ce sites at the CeO_2 - Cu_2O interface, which hindered the O_2 activation and thus the conversion of CH_4 to CO or CO_2 (Fig.3A). More importantly, it was an active center, where the facial dissociation at the interfacial Ce sites produced the active *OH, being able to open a new pathway and promote the direct CH_4 to CH_3OH conversion (Fig.3B). In this case, H_2O participated in the reaction directly as the actual O-provider and enables the direct CH_4 to CH_3OH conversion. In this system, O_2 only helped to reoxidize CeO_x , which was partially reduced during the reaction. Finally, H_2O functioned as an extractor as proposed previously, preventing the dehydrogenation of *CH_3O and thus CO_2 formation, while facilitating the hydrogenation and thus CH_3OH formation (Fig.3C). The identification of the key roles played by H_2O while tuning the selectivity during CH_4 conversion points to phenomena that must be taken into consideration when dealing with new routes for designing efficient catalyst for the selective $CH_4 \rightarrow CH_3OH$ oxidation.

References and Notes:

- 1. A. C. Rosenzweig, C. A. Frederick, S. J. Lippard, P. Nordlund, Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. *Nature* **366**, 537-543 (1993).
- 2. S. Sirajuddin, A. C. Rosenzweig, Enzymatic oxidation of methane. *Biochemistry* **54**, 2283-2294 (2015).
 - 3. M. O. Ross, F. MacMillan, J. Wang, A. Nisthal, T. J. Lawton, B. D. Olafson, S. L. Mayo, A. C. Rosenzweig, B. M. Hoffman, Particulate methane monooxygenase contains only mononuclear copper centers. *Science* **364**, 566-570 (2019).
- 4. R. Balasubramanian S. M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler, A. C. Rosenzweig, Oxidation of methane by a biological dicopper centre. *Nature* **465**, 115-119 (2010).

10

15

20

25

30

40

- 5. M. Ravi, M. Ranocchiari, A. van Bokhoven Jeroen, The direct catalytic oxidation of methane to methanol A critical assessment. *Angew. Chem. Int. Ed.* **56**, 16464-16483 (2017).
- 6. V. L. Sushkevich, D. Palagin, M. Ranocchiari, J. A. van Bokhoven, Selective anaerobic oxidation of methane enables direct synthesis of methanol. *Science* **356**, 523-527 (2017).
- 7. S. Grundner, M. A. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. Hensen, A. Jentys, M. Sanchez-Sanchez, J. A. Lercher, Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. *Nat. Commun.* **6**, 7546 (2015).
 - 8. J. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. *Nature* **551**, 605-608 (2017).
 - 9. C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely, G. J. Hutchings, Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. *Angew. Chem. Int. Ed.* **51**, 5129-5133 (2012).
 - 10. M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs, R. A. Schoonheydt, Selective oxidation of methane by the bis (μ-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites. *J. Am. Chem. Soc.* **127**, 1394-1395 (2005).
- 11. P. Tomkins, A. Mansouri, S. E. Bozbag, F. Krumeich, M. B. Park, E. M. C. Alayon, M. Ranocchiari, J. A. van Bokhoven, Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. *Angew. Chem. Int. Ed.* **55**, 5467-5471 (2016).
 - 12. Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, Low-temperature activation of methane on the IrO2 (110) surface. *Science* **356**, 299-303 (2017).
- 13. Z. Liu, P. Lustemberg, R. A. Gutierrez, J. J. Carey, R. M. Palomino, M. Vorokhta, D. C. Grinter, D. C.; P. J. Ramirez, V. Matolin, M. Nolan, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. A. Rodriguez, In-situ investigation of methane dry reforming on metal/ceria(111) surfaces: Metal–support interactions and C–H bond activation at low temperature. *Angew. Chem. Int. Ed.* **56**, 13041-13046 (2017).
 - 14. P. G. Lustemberg, R. M. Palomino, R. A. Gutierrez, D. C. Grinter, M. Vorokhta, Z. Liu, P. J. Ramirez, V. Matolin, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. A. Rodriguez, Direct conversion of methane to methanol on Ni-ceria surfaces: Metal–support interactions and waterenabled catalytic conversion by site blocking. *J. Am. Chem. Soc.* **140**, 7681-7687 (2018).
 - 15. X. Deng, T. Herranz, C. Weis, H. Bluhm, M. Salmeron, Adsorption of water on Cu₂O and Al₂O₃ thin films. *J. Phys. Chem. C* **112**, 9668-9672 (2008).
- 16. Z. Zuo, P. J. Ramírez, S. D. Senanayake, P. Liu, J. A. Rodriguez, Low-temperature conversion of methane to methanol on CeO_x/Cu₂O catalysts: water controlled activation of the C–H bond. *J. Am. Chem. Soc.* **138**, 13810-13813 (2016).
 - 17. P. J. Smeets, R. G. Hadt, J. S. Woertink, P. Vanelderen, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. *J. Am. Chem. Soc.* **132**, 14736-14738 (2010).

10

15

25

30

40

- 18. J. S. Woertink, P. J. Smeets, M. H. Groothaert, M. A. Vance, B. F. Sels, R. A. Schoonheydt, E. I. Solomon, A [Cu₂O]²⁺ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 18908-18913 (2009).
- 19. G. Li, P. Vassilev, M. Sanchez-Sanchez, J. A. Lercher, E. J. M. Hensen, E. A. Pidko, Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. *J. Catal.* **338**, 305-312 (2016).
- 20. P. Tomkins, M. Ranocchiari, J. A. van Bokhoven, Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. *Acc. Chem. Res.* **50**, 418-425 (2017).
- 21. J. Carrasco, D. López-Durán, Z. Liu, T. Duchoň, J. Evans, S. D. Senanayake, E. J. Crumlin, V. Matolín, J. A. Rodríguez, M. V. Ganduglia-Pirovano, In situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal—support interactions for the cleavage of O–H bonds. *Angew. Chem. Int. Ed.* **54**, 3917-3921 (2015)
- 22. J. A. Rodriguez, J. Graciani, J. Evans, J. B. Park, F. Yang, D. Stacchiola, S. D. Senanayake, S. Ma, M. Pérez, P. Liu, J. F. Sanz, J. Hrbek, Water-gas shift reaction on a highly active inverse CeO_x/Cu(111) Catalyst: Unique role of ceria nanoparticles. *Angew. Chem. Int. Ed.* **48**, 8047-8050 (2009).
- 23. F. Yang, J. Graciani, J. Evans, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, CO oxidation on inverse CeO_x/Cu(111) catalysts: High catalytic activity and ceria-promoted dissociation of O₂. *J. Am. Chem. Soc.* **133**, 3444-3451 (2011).
- 24. Y. Lykhach, T. Staudt, M. P. A. Lorenz, R. Streber, A. Bayer, H.-P. Steinrück, J. Libuda, Microscopic insights into methane activation and related processes on Pt/ceria model catalysts. *ChemPhysChem* **11**, 1496-1504 (2010).
 - 25. A. Siokou, R. M. Nix, Interaction of methanol with well-defined ceria surfaces: Reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study. *J. Phys. Chem. B* **103**, 6984-6997 (1999).
 - 26. D. R. Mullins, Variations in the surface chemistry of methanol with CeO₂(100) at low and elevated pressures. *Surf. Interface Anal.* **50**, 913-920 (2018).
 - 27. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **6**, 15-50 (1996).
 - 28. C. T. Campbell, L. Árnadóttir, J. R. V. Sellers, Kinetic prefactors of reactions on solid surfaces. *Z. Phys. Chem.* **227**, 1435-1454 (2013).
 - 29. S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts. *Science* **355**, 1296-1299 (2017).
 - 30. NIST computational chemistry comparison and benchmark database. http://cccbdb.nist.gov/.
- Refs 26 to 44 appear in this list and NOT in the SM, thx

Acknowledgments:

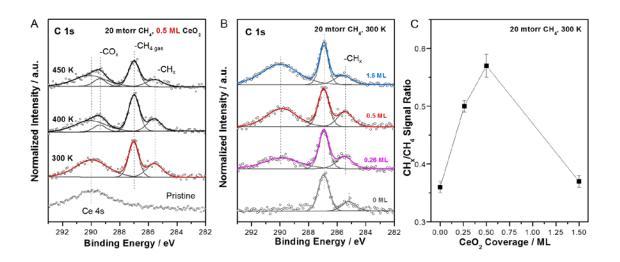
Funding: The research carried out at Brookhaven National Laboratory (BNL), was supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences under contract No. DE-SC0012704. X-ray spectroscopy measurements were performed at beamline 9.3.2 at the Advanced Light Source of LBNL, which is a DOE Office of Science User Facility under

contract no. DE-AC02-05CH11231. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a U.S. DOE Office of Science Facility, and the Scientific Data and Computing Center, a component of the Computational Science Initiative at BNL under Contract No. DE-SC0012704, at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility, supported by the Office of Science of the DOE under contract DE-AC02-05CH11231 and at Stony Brook University, which was founded by National Science Foundation grant (#1531492). SDS is partially supported by a U.S. DOE Early Career Award. **Author contributions:** P.L., J.A.R. and S.D.S. came with the general idea and supervised the execution of the project and written of the article. Z.L and E.H. worked in the main writing of the manuscript. Z.L., R.M.P., T.D., S.N. and D.C.G. performed synchrotron photoemission experiments at the ALS. I.O., N.R. and M.M. did studies with XPS and morphology characterization. E.H and W.L. performed the theoretical calculations. **Competing interests:** The authors declare no competing financial interests. **Data and materials availability:** All data is available in the main text or the supplementary materials.

Supplementary Materials:

Materials and Methods Figures S1-S13

Tables S1-S2


References (27-30)

20

5

10

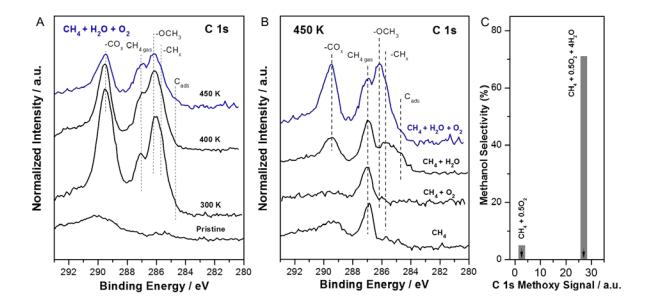
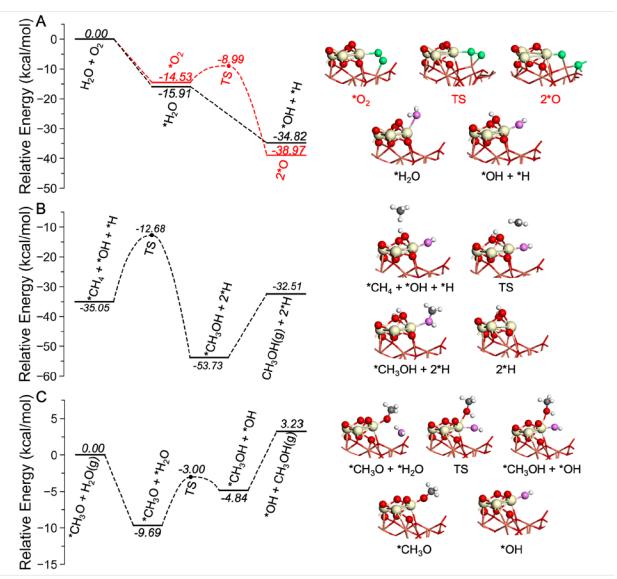

15

Fig. 1. Methane interaction with CeO₂/**Cu**₂**O**/**Cu**(111). C 1s region of the AP-XPS spectra for introducing 20 mTorr of CH₄ to (A) 0.5 ML CeO₂ covered Cu₂O/Cu(111) surface at different temperatures, (B) different coverages of ceria on Cu₂O/Cu(111) surface at 300 K. (C) Comparison

of the surface -CH_x amount derived from the integration of the corresponding C 1s normalized peak in (B).


Fig. 2. Water effects on methoxy formation on CeO₂/**Cu**₂**O**/**Cu**(111). C 1s region of the AP-XPS spectra for (A) the CeO₂/Cu₂O/Cu(111) surface (θ_{CeO_2} ~ 0.5 ML) when exposed to a 20 mTorr CH₄ + 80 mTorr H₂O + 10 mTorr O₂ of gas mixture at different temperatures, (B) comparison of exposing CeO₂/Cu₂O/Cu(111) surfaces (θ_{CeO_2} ~ 0.5 ML) to different gas reactants at 450 K. (C) CH₃OH

10

15

selectivity versus the amount of -CH₃O generated with and without addition of water. The results for the catalytic tests were taken from. (*16*).

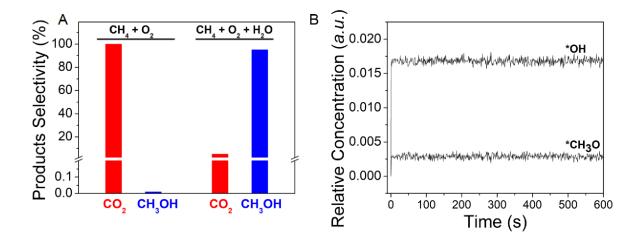

As the referee noted, this is not very accessible – some heading in the figure, telling what is happening (absorption, what bond breaks or forms, etc) would help. It's not clear that all of the intermediates here are needed, as it's difficult to focus on key steps. The three roles of water should be clearly indicated as well. Also give the energy in kcal/mole on an axis on the right sides

Fig. 3. DFT-calculated potential energy diagrams for the three important steps involved in CH₄ oxidation by O₂ and H₂O on CeO₂/Cu₂O/Cu(111). (A) O₂ and H₂O dissociation, showing the preferential H₂O dissociative adsorption and thus the blocked active Ce sites from O₂ by H₂O; (B) CH₄ oxidation by *OH, demonstrating the enabled one-step CH₃OH synthesis from CH₄ by dissociated fragments from H₂O; (C) Hydrogenation of *CH₃O by H₂O, indicating the facilitated CH₃OH formation or extraction by H₂O. The structures of intermediates and transition states (TS)

were also included. Yellow: Ce; brown: Cu; red: O in $CeO_2/Cu_2O/Cu(111)$ (A) and $*CH_xO$ (B); green: O in O_2 ; purple: O in H_2O ; gray: C; white: H.

Fig. 4. KMC-simulated product selectivity and reaction intermediates. (**A**) Selectivity of CH₄ oxidation over $CeO_2/Cu_2O/Cu(111)$ on exposure to CH₄ and O₂ with pressure ratio of 2:1 or CH₄, O₂ and H₂O with pressure ratio of 2:1:8 at 450K. (**B**) Coverage of adsorbed surface species on $CeO_2/Cu_2O/Cu(111)$ under the mixture of CH₄, O₂ and H₂O.