001     875192
005     20210130004858.0
024 7 _ |a 10.1029/2019WR026058
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/24875
|2 Handle
024 7 _ |a altmetric:80191475
|2 altmetric
024 7 _ |a WOS:000538987800040
|2 WOS
037 _ _ |a FZJ-2020-01862
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Fisher, Joshua B.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station
260 _ _ |a [New York]
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589449387_19898
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space Administration (NASA). The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as Level‐3 (L3) latent heat flux (LE) data products. These data are generated from the Level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, Version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized root‐mean‐square error, RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are overrepresented. The 70‐m‐high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1‐km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lee, Brian
|0 0000-0003-3146-7677
|b 1
700 1 _ |a Purdy, Adam J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Halverson, Gregory H.
|0 0000-0002-4028-4357
|b 3
700 1 _ |a Dohlen, Matthew B.
|0 0000-0001-6512-2621
|b 4
700 1 _ |a Cawse‐Nicholson, Kerry
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Audrey
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Anderson, Ray G.
|0 0000-0002-6202-5890
|b 7
700 1 _ |a Aragon, Bruno
|b 8
700 1 _ |a Arain, M. Altaf
|0 0000-0002-1433-5173
|b 9
700 1 _ |a Baldocchi, Dennis D.
|0 0000-0003-3496-4919
|b 10
700 1 _ |a Baker, John M.
|0 0000-0002-7937-9839
|b 11
700 1 _ |a Barral, Hélène
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Bernacchi, Carl J.
|0 0000-0002-2397-425X
|b 13
700 1 _ |a Bernhofer, Christian
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Biraud, Sébastien C.
|0 0000-0001-7697-933X
|b 15
700 1 _ |a Bohrer, Gil
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Brunsell, Nathaniel
|0 0000-0002-4460-8283
|b 17
700 1 _ |a Cappelaere, Bernard
|0 0000-0001-8533-1164
|b 18
700 1 _ |a Castro‐Contreras, Saulo
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Chun, Junghwa
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Conrad, Bryan J.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Cremonese, Edoardo
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Demarty, Jérôme
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Desai, Ankur R.
|0 0000-0002-5226-6041
|b 24
700 1 _ |a De Ligne, Anne
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Foltýnová, Lenka
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Goulden, Michael L.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Griffis, Timothy J.
|0 0000-0002-2111-5144
|b 28
700 1 _ |a Grünwald, Thomas
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Johnson, Mark S.
|0 0000-0001-5070-7539
|b 30
700 1 _ |a Kang, Minseok
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Kelbe, Dave
|0 0000-0002-4446-3678
|b 32
700 1 _ |a Kowalska, Natalia
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Lim, Jong‐Hwan
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Maïnassara, Ibrahim
|0 0000-0002-0732-867X
|b 35
700 1 _ |a McCabe, Matthew F.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Missik, Justine E. C.
|0 0000-0002-6448-0694
|b 37
700 1 _ |a Mohanty, Binayak P.
|0 0000-0001-9381-7279
|b 38
700 1 _ |a Moore, Caitlin E.
|0 0000-0003-0993-4419
|b 39
700 1 _ |a Morillas, Laura
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Morrison, Ross
|0 0000-0002-1847-3127
|b 41
700 1 _ |a Munger, J. William
|0 0000-0002-1042-8452
|b 42
700 1 _ |a Posse, Gabriela
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Richardson, Andrew D.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Russell, Eric S.
|0 0000-0003-0811-5139
|b 45
700 1 _ |a Ryu, Youngryel
|0 0000-0001-6238-2479
|b 46
700 1 _ |a Sanchez‐Azofeifa, Arturo
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Schmidt, Marius
|0 P:(DE-Juel1)144420
|b 48
700 1 _ |a Schwartz, Efrat
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Sharp, Iain
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Šigut, Ladislav
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Tang, Yao
|0 P:(DE-Juel1)176951
|b 52
700 1 _ |a Hulley, Glynn
|0 0000-0002-3266-179X
|b 53
700 1 _ |a Anderson, Martha
|0 0000-0003-0748-5525
|b 54
700 1 _ |a Hain, Christopher
|0 0000-0002-0093-6816
|b 55
700 1 _ |a French, Andrew
|0 0000-0002-4018-1817
|b 56
700 1 _ |a Wood, Eric
|0 0000-0001-7037-9675
|b 57
700 1 _ |a Hook, Simon
|0 P:(DE-HGF)0
|b 58
773 _ _ |a 10.1029/2019WR026058
|g Vol. 56, no. 4
|0 PERI:(DE-600)2029553-4
|n 4
|p e2019WR026058
|t Water resources research
|v 56
|y 2020
|x 1944-7973
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875192/files/2019WR026058.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875192/files/2019WR026058.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875192
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 48
|6 P:(DE-Juel1)144420
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21