000875202 001__ 875202
000875202 005__ 20210130004901.0
000875202 0247_ $$2doi$$a10.1016/j.cell.2020.03.052
000875202 0247_ $$2ISSN$$a0092-8674
000875202 0247_ $$2ISSN$$a1097-4172
000875202 0247_ $$2Handle$$a2128/24985
000875202 0247_ $$2altmetric$$aaltmetric:79913068
000875202 0247_ $$2pmid$$apmid:32302590
000875202 0247_ $$2WOS$$aWOS:000533623900008
000875202 037__ $$aFZJ-2020-01870
000875202 082__ $$a610
000875202 1001_ $$0P:(DE-HGF)0$$aNava, Michele M.$$b0
000875202 245__ $$aHeterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
000875202 260__ $$aNew York, NY$$bElsevier$$c2020
000875202 3367_ $$2DRIVER$$aarticle
000875202 3367_ $$2DataCite$$aOutput Types/Journal article
000875202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591258964_926
000875202 3367_ $$2BibTeX$$aARTICLE
000875202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875202 3367_ $$00$$2EndNote$$aJournal Article
000875202 520__ $$aTissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.
000875202 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000875202 588__ $$aDataset connected to CrossRef
000875202 7001_ $$0P:(DE-HGF)0$$aMiroshnikova, Yekaterina A.$$b1
000875202 7001_ $$0P:(DE-HGF)0$$aBiggs, Leah C.$$b2
000875202 7001_ $$0P:(DE-HGF)0$$aWhitefield, Daniel B.$$b3
000875202 7001_ $$0P:(DE-HGF)0$$aMetge, Franziska$$b4
000875202 7001_ $$0P:(DE-HGF)0$$aBoucas, Jorge$$b5
000875202 7001_ $$0P:(DE-HGF)0$$aVihinen, Helena$$b6
000875202 7001_ $$0P:(DE-HGF)0$$aJokitalo, Eija$$b7
000875202 7001_ $$0P:(DE-HGF)0$$aLi, Xinping$$b8
000875202 7001_ $$0P:(DE-HGF)0$$aGarcía Arcos, Juan Manuel$$b9
000875202 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b10$$ufzj
000875202 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b11$$ufzj
000875202 7001_ $$0P:(DE-HGF)0$$aNiessen, Carien M.$$b12
000875202 7001_ $$0P:(DE-HGF)0$$aDahl, Kris Noel$$b13
000875202 7001_ $$0P:(DE-HGF)0$$aWickström, Sara A.$$b14$$eCorresponding author
000875202 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2020.03.052$$gp. S0092867420303457$$n4$$p800-817$$tCell$$v181$$x0092-8674$$y2020
000875202 8564_ $$uhttps://juser.fz-juelich.de/record/875202/files/1-s2.0-S0092867420303457-main.pdf$$yOpenAccess
000875202 8564_ $$uhttps://juser.fz-juelich.de/record/875202/files/1-s2.0-S0092867420303457-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875202 909CO $$ooai:juser.fz-juelich.de:875202$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b10$$kFZJ
000875202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b11$$kFZJ
000875202 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000875202 9141_ $$y2020
000875202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875202 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000875202 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875202 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000875202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2017
000875202 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bCELL : 2017
000875202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875202 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875202 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875202 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875202 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875202 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000875202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875202 920__ $$lyes
000875202 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000875202 980__ $$ajournal
000875202 980__ $$aVDB
000875202 980__ $$aUNRESTRICTED
000875202 980__ $$aI:(DE-Juel1)IBI-2-20200312
000875202 9801_ $$aFullTexts