001     875202
005     20210130004901.0
024 7 _ |a 10.1016/j.cell.2020.03.052
|2 doi
024 7 _ |a 0092-8674
|2 ISSN
024 7 _ |a 1097-4172
|2 ISSN
024 7 _ |a 2128/24985
|2 Handle
024 7 _ |a altmetric:79913068
|2 altmetric
024 7 _ |a pmid:32302590
|2 pmid
024 7 _ |a WOS:000533623900008
|2 WOS
037 _ _ |a FZJ-2020-01870
082 _ _ |a 610
100 1 _ |a Nava, Michele M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
260 _ _ |a New York, NY
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591258964_926
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Miroshnikova, Yekaterina A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Biggs, Leah C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Whitefield, Daniel B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Metge, Franziska
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Boucas, Jorge
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vihinen, Helena
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jokitalo, Eija
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Li, Xinping
|0 P:(DE-HGF)0
|b 8
700 1 _ |a García Arcos, Juan Manuel
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 10
|u fzj
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 11
|u fzj
700 1 _ |a Niessen, Carien M.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Dahl, Kris Noel
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Wickström, Sara A.
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1016/j.cell.2020.03.052
|g p. S0092867420303457
|0 PERI:(DE-600)2001951-8
|n 4
|p 800-817
|t Cell
|v 181
|y 2020
|x 0092-8674
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/875202/files/1-s2.0-S0092867420303457-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/875202/files/1-s2.0-S0092867420303457-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875202
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL : 2017
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b CELL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-2-20200312
|k IBI-2
|l Mechanobiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-2-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21