001     875204
005     20220930130237.0
024 7 _ |a 10.1093/cercor/bhaa097
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a 2128/25679
|2 Handle
024 7 _ |a altmetric:81597239
|2 altmetric
024 7 _ |a pmid:32377664
|2 pmid
024 7 _ |a WOS:000580997100021
|2 WOS
037 _ _ |a FZJ-2020-01872
082 _ _ |a 610
100 1 _ |a Kharabian Masouleh, Shahrzad
|0 P:(DE-Juel1)171719
|b 0
|e Corresponding author
245 _ _ |a Influence of Processing Pipeline on Cortical Thickness Measurement
260 _ _ |a Oxford
|c 2020
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600424188_21835
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The Deutsche Forschungsgemeinschaft (DFG, GE 2835/1-1 and EI 816/4-1), the Helmholtz Portfolio Theme “Supercomputing and Modelling for the Human Brain,” and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1) and Grant Agreement No. 785907 (HBP SGA2).Notes
520 _ _ |a In recent years, replicability of neuroscientific findings, specifically those concerning correlates of morphological properties of gray matter (GM), have been subject of major scrutiny. Use of different processing pipelines and differences in their estimates of the macroscale GM may play an important role in this context. To address this issue, here, we investigated the cortical thickness estimates of three widely used pipelines. Based on analyses in two independent large-scale cohorts, we report high levels of within-pipeline reliability of the absolute cortical thickness-estimates and comparable spatial patterns of cortical thickness-estimates across all pipelines. Within each individual, absolute regional thickness differed between pipelines, indicating that in-vivo thickness measurements are only a proxy of actual thickness of the cortex, which shall only be compared within the same software package and thickness estimation technique. However, at group level, cortical thickness-estimates correlated strongly between pipelines, in most brain regions. The smallest between-pipeline correlations were observed in para-limbic areas and insula. These regions also demonstrated the highest interindividual variability and the lowest reliability of cortical thickness-estimates within each pipeline, suggesting that structural variations within these regions should be interpreted with caution.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eickhoff, Simon B
|0 P:(DE-Juel1)131678
|b 1
|u fzj
700 1 _ |a Zeighami, Yashar
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lewis, Lindsay B
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dahnke, Robert
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gaser, Christian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Chouinard-Decorte, Francois
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lepage, Claude
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Scholtens, Lianne H
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 9
|u fzj
700 1 _ |a Glahn, David C
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Blangero, John
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Evans, Alan C
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Genon, Sarah
|0 P:(DE-Juel1)161225
|b 13
|u fzj
700 1 _ |a Valk, Sofie L
|0 P:(DE-Juel1)173843
|b 14
|u fzj
773 _ _ |a 10.1093/cercor/bhaa097
|g p. bhaa097
|0 PERI:(DE-600)1483485-6
|n 9
|p 5014–5027
|t Cerebral cortex
|v 30
|y 2020
|x 1047-3211
856 4 _ |u https://juser.fz-juelich.de/record/875204/files/Invoice_E13640734.pdf
856 4 _ |u https://juser.fz-juelich.de/record/875204/files/Invoice_E13662080.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/875204/files/CerCor-2019-00888.R1_Proof_modified.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/875204/files/Invoice_E13640734.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/875204/files/Invoice_E13662080.pdf?subformat=pdfa
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/875204/files/bhaa097.pdf
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/875204/files/bhaa097.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:875204
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)161225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)173843
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21