000875239 001__ 875239
000875239 005__ 20220930130237.0
000875239 0247_ $$2doi$$a10.1007/s11128-020-02692-8
000875239 0247_ $$2Handle$$a2128/24990
000875239 0247_ $$2WOS$$aWOS:000538059200001
000875239 0247_ $$2altmetric$$aaltmetric:90058909
000875239 037__ $$aFZJ-2020-01888
000875239 082__ $$a004
000875239 1001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b0$$eCorresponding author
000875239 245__ $$aBenchmarking the quantum approximate optimization algorithm
000875239 260__ $$aDordrecht$$bSpringer Science + Business Media B.V.$$c2020
000875239 3367_ $$2DRIVER$$aarticle
000875239 3367_ $$2DataCite$$aOutput Types/Journal article
000875239 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591274828_926
000875239 3367_ $$2BibTeX$$aARTICLE
000875239 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875239 3367_ $$00$$2EndNote$$aJournal Article
000875239 520__ $$aThe performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
000875239 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000875239 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000875239 588__ $$aDataset connected to CrossRef
000875239 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1$$ufzj
000875239 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b2$$ufzj
000875239 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b3$$ufzj
000875239 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4$$ufzj
000875239 773__ $$0PERI:(DE-600)2088114-9$$a10.1007/s11128-020-02692-8$$gVol. 19, no. 7, p. 197$$n7$$p197$$tQuantum information processing$$v19$$x1570-0755$$y2020
000875239 8564_ $$uhttps://juser.fz-juelich.de/record/875239/files/Willsch2020_Article_BenchmarkingTheQuantumApproxim.pdf$$yOpenAccess
000875239 8564_ $$uhttps://juser.fz-juelich.de/record/875239/files/Willsch2020_Article_BenchmarkingTheQuantumApproxim.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875239 8767_ $$92020-05-05$$d2020-05-06$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pQINP-D-19-00718R1$$zapproved im dashboard
000875239 909CO $$ooai:juser.fz-juelich.de:875239$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000875239 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875239 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875239 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875239 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM INF PROCESS : 2017
000875239 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875239 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875239 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875239 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875239 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875239 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875239 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875239 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875239 9141_ $$y2020
000875239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b0$$kFZJ
000875239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
000875239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b2$$kFZJ
000875239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b3$$kFZJ
000875239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000875239 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000875239 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000875239 980__ $$ajournal
000875239 980__ $$aVDB
000875239 980__ $$aUNRESTRICTED
000875239 980__ $$aI:(DE-Juel1)JSC-20090406
000875239 980__ $$aAPC
000875239 9801_ $$aAPC
000875239 9801_ $$aFullTexts